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a b s t r a c t

We investigated the problem of automatic depth of anesthesia (DOA) estimation from elec-

troencephalogram (EEG) recordings. We employed Time Encoded Signal Processing And

Recognition (TESPAR), a time-domain signal processing technique, in combination with

multi-layer perceptrons to identify DOA levels. The presented system learns to discriminate

between five DOA classes assessed by human experts whose judgements were based on

EEG mid-latency auditory evoked potentials (MLAEPs) and clinical observations. We found

that our system closely mimicked the behavior of the human expert, thus proving the util-

ity of the method. Further analyses on the features extracted by our technique indicated

that information related to DOA is mostly distributed across frequency bands and that the
MLP

TESPAR

M

presence of high frequencies (>80 Hz), which reflect mostly muscle activity, is beneficial for

DOA detection.
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. Introduction

eature extraction techniques applied to biomedical signals
ave proven essential in life-science applications (automated
xternal defibrillators, implanted pacemakers, diagnosis of
pilepsia, etc.). For general anesthesia it remains a challenge
o monitor the impact of anesthetics on the brain. Two recent
tudies showed an incidence of unwanted and primarily unde-
ected patient awareness during general anesthesia of about

.13% [1,2]. Since awareness and memory formation can cause
evere psychological trauma [3], these studies have motivated
he need for DOA monitoring devices. Substantial progress has
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been made in identifying signal features that relate well to
anesthetics, in a dose-dependent way, for both spontaneous
electroencephalogram (EEG) and mid-latency auditory evoked
potentials (MLAEPs). Consequently, monitoring devices are
commercially available today [2,4–7].

An important issue in automated DOA assessment is the
feature extraction technique applied to the EEG signal. The
most successful commercial monitors extract a combination
Medical Systems; Narcotrend: Monitor Technik) or entropy
(Narcotrend, M-Entropy: Datex-Ohmeda) from spontaneous
EEG. In addition, evoked potentials (electrical responses of

erved.

mailto:moca@coneural.org
dx.doi.org/10.1016/j.cmpb.2009.03.001


s i n
192 c o m p u t e r m e t h o d s a n d p r o g r a m

the nervous system elicited by and time-locked to external
stimulation) have also kept a major role in DOA assess-
ment [8]: certain peaks and troughs in the MLAEP decrease
in amplitude and increase in latency with increasing DOA
[9,10]. Other methods, extracting features in the time-domain
[2,11–14] have also been developed, most based on proba-
bilistic approaches. Such a method is the A-line ARX Index
(Danmeter A/S) [15], the only commercially available monitor-
ing device based on MLAEP.

Situations may arise in which some monitors fail to per-
form adequately [6,16–21]. Therefore, it has been suggested
that improved DOA assessment should rely on multiple fea-
tures extracted from EEG [22]. Here we propose an additional
feature extraction technique, namely Time Encoded Signal
Processing And Recognition (TESPAR) that is novel to the
problem of EEG DOA detection. It has shown impressive per-
formance in voice recognition and engineering applications
[23–25], and being a time-domain approach, it has the pos-
sibility to capture information that is not distinguishable in
the frequency-domain. We combined TESPAR with a nonlin-
ear classification technique based on multi-layer perceptrons
(MLPs), in order to validate the usefulness of TESPAR for DOA
detection. The technique we introduce is not to be considered
a competitor of well-established DOA monitors, but the addi-
tional features extracted by TESPAR may be useful to enhance
the already established methods.

2. Materials and methods

We developed an artificial system that extracts features from
the raw EEG signal using TESPAR. The features are then fed
to a nonlinear MLP classifier, which is trained and tested on
trials labeled by a human expert relying on a morphologically
different signal (MLAEP).

2.1. Anesthesia

With the approval of the local ethics committee (Ludwig-
Maximilians-University, Munich), 62 patients were enrolled
in the study after having provided their written informed
consent. After the induction of general anesthesia and admin-
istration of muscle relaxation, the anesthesia was maintained
with a combination of hypnotics and opioids. The choice of
these substances was left to the discretion of the attending
anesthesiologist and the dosage was based on clinical rou-
tine. The administration of hypnotic agent was adjusted when
signs of wakefulness were present and was preemptively
increased before anticipated painful surgical stimulation. The
MLAEP was not available to the responsible anesthesiologist
(for detailed information see Appendix A.1).

2.2. Data acquisition

During the medical procedures (see also Appendix A.2) audi-
tory stimulation was applied to the patients in the form of

short clicks with a continuous repetition rate of 9.1 Hz. All the
intraoperative events such as awake, induction, intubation,
coughing, spontaneous breathing, response to simple or com-
plex requests and so on were coded by keystrokes and stored
b i o m e d i c i n e 9 5 ( 2 0 0 9 ) 191–202

along the recorded EEG. Data was recorded continuously from
induction to wake-up. The EEG signal was recorded differen-
tially between A1 and Fp2, according to the international 10/20
system [26], with a sampling rate of 4 kHz.

2.3. Data pre-processing

The amplified and recorded data, with a bandwidth of
0.5–600 Hz, were processed offline for further filtering, arti-
fact removal (for detailed information see Appendix A.3), and
rejection of power line frequency (50 Hz). Next we divided
the data into 100 s long segments, recorded before and after
intraoperative events. These events offered additional infor-
mation to the human expert and were concomitant with
actions performed on the patient (e.g. changes in the drugs
administration, intubation, skin incision, etc.) or with feed-
back detected from the patient (e.g. blood pressure variation,
tears, heart rate change, active breathing, etc.). The data from
each segment were analyzed in two different ways. First, we
divided the segment into short trials (110 ms long) aligned to
the auditory stimulus. Segments that contained less than 600
artefact-free trials were discarded. The trials were used for the
MLAEP-based classification performed by human experts. Sec-
ond, segments validated previously were also analyzed in their
full length (without dividing them into trials) using the TES-
PAR method. Subsequently, features extracted by TESPAR were
used for the classification performed by MLP artificial neural
networks. To further identify the importance of different fre-
quency bands for classification, filtering was also applied on
each segment, prior to feature extraction.

2.4. Human expert classification

We randomly selected 600 segments across all 62 patients that
included periods with different depths of anesthesia. To man-
ually classify the data based on the MLAEP, we computed the
evoked responses by averaging 600–800 artefact-clean trials
per segment. Next the MLAEPs were visually categorized into
one of five classes by two human experts, each expert being
unaware of the other expert’s judgement. Additional informa-
tion was provided by the corresponding intraoperative events
(see above). The experts relied on this additional information
to decide between two adjacent DOA classes. The five DOA
classes were defined as follows: class 5 corresponded to an
awake patient able to respond to complex verbal requests;
class 4 was defined as very light anesthesia with patients able
to respond to very simple requests like hand squeeze; class
3 was associated with states of sleep, in which patients do
not respond to light stimuli but might react to strong ones;
class 2 corresponded to the optimal anesthesia level; and class
1 was linked to too deep anesthesia, where brain activity is
unnecessarily low (burst suppression).

The Observer’s Assessment of Alertness/Sedation (OAA/S)
[27] scale has been widely in use to develop and evaluate DOA
monitoring devices with a main focus on periods when induc-
tion of anesthesia is performed or when patients return to

consciousness. With the DOA scales used in this study we
intended to cover the full range of clinical anesthesia. With
the DOA assessment as used in our study there is a coarser
resolution for the states of sedation with the DOA levels 4 and
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Fig. 1 – TESPAR coding diagram block. It shows how the
digital signal is divided in epochs (delimited by vertical
dotted lines). Each epoch is characterized by its number of
samples (D) and its number of local minima (S) (we refer to
the local minima of the absolute value of the waveform).
The (D,S) pair stream (values showed for each epoch) is
then transformed in a symbol stream, with the help of an
alphabet that maps each pair onto a symbol (number). The
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ymbol stream is further condensed in TESPAR A or S
atrices in the final stage of the coder.

corresponding to OAA/S levels 2–5. On the side of deep gen-
ral anesthesia the resolution of the scale used in this study
s finer with the OAA/S level 1 being potentially differentiated
nto DOA classes 1–3.

.5. Feature extraction, TESPAR

irst proposed by King and Glossing [25], TESPAR is a time-
omain digital language for coding “band-limited” signals.
he simple TESPAR model uses features that can be easily
etected by visual inspection of the waveform, namely zero
rossings and local extremes [28].

Since TESPAR was described in detail previously [23–25,28],
e will be limited to presenting the most important aspects of
ESPAR. First, the signal is split into portions situated between

wo adjacent zero crossings of the waveform, called epochs
Fig. 1). Each epoch is described by a pair of parameters:
D), called duration, characterizes the length of the epoch in
amples, and (S), which describes the shape of the epoch by
ounting the number of its local minima (we used the num-
er of local minima of the absolute value of the waveform).

he pair (D,S) is then replaced, based on a TESPAR alpha-
et (codebook), by a number called a TESPAR symbol. The
ESPAR alphabet is specific to each class of signals [28](e.g.
oice, EEG, and seismic vibrations), and its main purpose is
i o m e d i c i n e 9 5 ( 2 0 0 9 ) 191–202 193

to reduce the noise affecting the epochs by assigning the
same symbol to similar epochs. The alphabet approximates
the distribution of epochs in the (D,S) plane by means of vector
quantization (VQ) (e.g. Kohonen maps, K-means, Linde Buzo
Gray). In our case, preliminary tests indicated that the shape
of the epochs did not contain useful information; therefore,
S was not used by the analysis. The duration D of an epoch
gives a rough estimation of the most prominent frequency
associated with the respective piece of signal. We ordered
TESPAR symbols according to their corresponding duration
(D) such that higher ranking symbols implied a longer dura-
tion, and thus, a lower dominant frequency of the epoch.
By using the TESPAR alphabet, the waveform was trans-
formed into a symbol stream which was further processed to
obtain fixed-size descriptors that are called TESPAR matrices
(Fig. 2).

The first matrix, called the S matrix, is a histogram of sym-
bols counts (how many times a certain symbol is present in
the signal). The second matrix, called the A matrix, is a two-
dimensional matrix that counts how many times a pair of
symbols, situated L symbols apart, appears in the signal. The
L parameter called “lag”, is usually kept constant for a certain
implementation. Small or large lag values give A matrices that
describe the short or long time evolution of the signal, respec-
tively [28]. Since time is included through the lag, the A matrix
provides richer information content than the S matrix. Prelim-
inary tests (results not shown), revealed that A matrices with
a lag = 1 yielded the best performance.

In addition, we applied further processing to the matrices
to increase the saliency of the representation. Long epochs,
which were usually more rare, were emphasized with respect
to shorter, more frequent epochs. The nonlinear transforma-
tion aij := ln(aij + 1) applied on the element aij of the A matrix
allowed the amplification of small values and small differ-
ences so that long epochs received increased importance. The
same nonlinear transformation was applied to elements si

of the S matrix. Before the TESPAR matrices were presented
to the MLP, they were normalized to the interval [0, 1], by
dividing each element in the matrix by the maximum of the
matrix.

2.6. Feature mapping (classification)

To test whether TESPAR matrices contain information about
DOA, we used MLP networks [29] to compute a mapping
between TESPAR matrices and the five classes of DOA. MLP
classifiers were chosen because they have recently recorded
notable successes in anesthesia-related problems [30]. MLP
topologies were constrained by the mapping problem: The size
of the input layer was defined by the size of the input TESPAR
matrix, the output layer had five output neurons (one for each
DOA class), the size and number of hidden layers was opti-
mized in a heuristic manner. The backpropagation algorithm
was used for training [31,32].

Classification performance was further boosted [23,33,34]
by employing ensembles of classifiers [34] trained by using a

bagging technique (for each classifier a subset of the train-
ing set was randomly selected [35]). To avoid training bias, the
number of examples was balanced, such that the training set
for each class had the same size. This limited the training set
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Fig. 2 – TESPAR S and A matrices (L = 1) for awake (class 5) and deeply anesthetized states (class 1). The S matrix counts how
many times symbols appear in the data stream. The A matrix represents in a gray scale the number of occurrences for each
symbol pair situated L symbols apart. The log transformation (see Section 2.5“Feature extraction, TESPAR”) has been applied

atric
to the matrices. Prominent differences can be seen in the m

size to the size of the smallest available training set (in our
case, corresponding to class 5). After training, the MLP ensem-
ble used a majority vote strategy to give the final classification
result.

3. Results

We employed TESPAR and MLP classifiers, to extract DOA infor-
mation contained in EEG segments comprising multiple trials
that followed an auditory stimulus. An entire segment was
considered as either training or a testing sample. The perfor-
mance achieved by the artificial system (TESPAR and MLP) on
the EEG segments was assessed in comparison to the classi-
fication performed by two anesthesiologists with expertise in
visual classification of MLAEPs computed on the same seg-
ments.

3.1. The human classifier

We first evaluated the performance of the human experts
(see Appendix A.4). For this purpose, the two anesthesiolo-
gists were asked to classify the same data on two different
occasions. Anesthesiologists A and B classified 70.77% and
68.29% of the segments in the same way, respectively

(see also Fig. A.1 and Table A.1). These measures of self-
consistency were regarded as the highest performance that
the artificial system, learning from the human expert, could
achieve.
es for the two extreme states (awake, deeply anesthetized).

3.2. Method configuration and calibration

To calibrate the method, we have used MLPs with one hidden
layer, trained and tested on TESPAR A matrices (Fig. 2). For each
human expert, the validated data were half-split to obtain a
training set and a testing set, and these sets were balanced
according to the procedure presented above (“Feature mapping
(classification)”). Class 5, corresponding to an awake patient,
occurred most rarely (19 and 20 times for A and B human
experts, respectively). Thus, the size of the training set was
limited to 9 and 10 samples per class for anesthesiologist A
and B, respectively.

To adjust the TESPAR alphabet size and the hidden-
layer dimension, fifteen single MLPs were constructed for
each parameter configuration, each MLP having a randomly
assigned training subset. For each MLP the accuracy was eval-
uated with respect to the classification performed by one
of the anesthesiologists. The median of classification accu-
racy over the 15 MLPs was used as the main performance
indicator.

For the TESPAR alphabet size, we tested the range of
2–50 symbols. More than 15 symbols yielded a classifica-
tion performance above 50%. It is known that an alphabet
of about 30 symbols should be suitable for most types
of signals and applications [28]. Here, the highest per-
formance (∼ 55%) was obtained for 20 and 32 symbol
configurations.
Variation of the hidden-layer dimension (3, 5, 10, 15, 20,
30, 50, and 100) showed increased performance for 5 and 10
neurons. Further increase in the number of hidden-layer units
resulted in a steady performance decrease. Therefore, we kept
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Table 1 – Self-consistency of the human expert (YH−h)
and confusion matrices of the artificial system YH−A and
YH−S in configuration of best 1% ensemble of Log(AM)
and Log(SM), respectively.

H1 H2 H3 H4 H5

Human–Human (YH−h)
h1 37.50% 11.72% 3.23% 0.00% 0.00%
h2 50.00% 77.93% 22.58% 0.00% 0.00%
h3 12.50% 9.66% 61.29% 8.77% 0.00%
h4 0.00% 0.69% 12.90% 71.93% 50.00%
h5 0.00% 0.00% 0.00% 19.30% 50.00%

Human– Log(AM) (YH−A)
A1 54.55% 9.59% 4.35% 0.00% 0.00%
A2 45.45% 77.40% 23.19% 0.00% 0.00%
A3 0.00% 11.64% 52.17% 15.52% 0.00%
A4 0.00% 0.00% 14.49% 70.69% 60.00%
A5 0.00% 1.37% 5.80% 13.79% 40.00%

Human– Log(SM) (YH−S)
S1 63.64% 8.22% 5.80% 0.00% 0.00%
S2 36.36% 76.03% 23.19% 0.00% 0.00%

F
X
r
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m
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c o m p u t e r m e t h o d s a n d p r o g r a m s

he hidden-layer dimension as small as possible to encourage
eneralization.

The most suitable configuration was obtained with 32-size
ESPAR alphabet in conjunction with 5 hidden units. Unless
therwise specified the following architecture was used fur-
her: input layer with 32 or 1024 units for systems using S and

matrices, respectively; 5 neurons in the hidden layer and 5
eurons in the output layer (one for each DOA class).

.3. The artificial system performance

e first tested if there was a difference in the way that the
rtificial system learned one or the other human classifier. For
ach anesthesiologist we trained 125 MLPs on A matrices. To
nhance reliability and classification performance, networks
ere randomly grouped in 5 ensembles (comprising 25 net-
orks each). We computed the average and standard deviation
cross classification performances provided by these ensem-
les. For anesthesiologist A, we obtained a mean of 60.06%
nd a standard deviation of 1.48%. For anesthesiologist B,
e obtained a mean of 45.38% and a standard deviation of

.05%. The test indicated that the artificial system learned
etter from anesthesiologist A meaning that the association
etween segments and DOA classes for anesthesiologist A
resented a structure that was easier to grasp by the artifi-
ial system. Next we considered only anesthesiologist A as a
eference.

We further investigated whether MLPs with more than one
idden layer perform better than MLPs with a single hid-
en layer. Tests on a set of MLPs with five neurons in two
idden layers, grouped in the same configuration as above,
id not indicate any increase in classification performance

average of 60.62% and a standard deviation of 1.17%) for
nesthesiologist A.

In the following, we tested whether the logarithmic non-
inearity enhances the saliency of the TESPAR matrices, and

hether the temporal information contained in the A matrix

s beneficial. We trained four sets of 2500 MLPs, each corre-
ponding to a different system configuration (using S or A
atrices with or without the logarithmic nonlinearity). For

ach configuration, we analyzed the distribution of individ-

ig. 3 – The classification performance of the four sets of 2500 M
-axis we indicate which TESPAR matrix is used and whether th

epresents the self-consistency of the human classifier, which is
rtificial classifier. The box plots show, for each distribution, the
aximum performances. The ensemble performance is presente

nd (b) that are emphasized by the 10% indication (thick black ba
S3 0.00% 14.38% 49.28% 10.34% 0.00%
S4 0.00% 0.00% 17.39% 81.03% 60.00%
S5 0.00% 1.37% 4.35% 8.62% 40.00%

ual MLP classification performances and the score achieved
by the ensemble (Fig. 3 a). To further increase the perfor-
mance we next discarded the poor MLPs [31], focusing on the
best 1% of MLPs (Fig. 3b). Results indicate that the median
of the performance distribution increases by 1–2% (Fig. 3 a
and b) if the log nonlinearity is applied to the A or S matri-
ces. Also, the nonlinearity increases, in various amounts, the
classification performance of the ensemble (thick grey bars in
Fig. 3). Ensembles, consistently achieve higher performance
than the median performance over the MLPs used to construct
them. Moreover, for the best 1% selection (Fig. 3b) ensembles
even surpass the best network in the set. Note that A matri-
ces offer slightly better discrimination power compared to S

matrices. Finally, the highest performance was achieved by
ensembles of best 1% for the Log(SM) and Log(AM) features,
with accuracies of 69.05% and 68.03%, respectively. These
results must be judged in relation to the maximum perfor-

LP networks (a) and the selection of the best 1% (b). On the
e log nonlinearity is applied or not. The dotted line
taken as the maximum achievable performance by the
median, the quartiles q1 and q3, and the minimum and the
d through thick grey bars. Note the different scales in (a)
rs shown on the right).
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mance (self-consistency) that the reference human achieved
(70.77%).

We next investigated the two configurations that yielded
the best performance in order to test whether the classifi-
cation differed between the human expert and the artificial
system. Therefore, we assessed the similarity of three confu-
sion matrices. The first, (YH−h) (Table 1 upper pane), describes
the self-consistency performed by the human expert on two
different occasions. The second (YH−A) (Table. 1 center pane)
and third (YH−S) (Table 1 lower pane) confusion matrices,
compare the best 1% of Log(AM) and Log(SM) ensembles,
respectively, to the human expert. Each confusion matrix rep-
resents the empirical probability distribution that class i was
classified as class j. To estimate the similarity or dissimilar-
ity of two probability distributions we assessed the statistical
significance based on a Kolmogorov–Smirnov test, which is
sensitive to any difference in the distributions (such as differ-
ent means and shapes). Since the smallest p value obtained
for a class was 0.85(� 0.05) we concluded that there was no
significant statistical difference between confusion matrices
corresponding to the artificial system and human expert (YH−A

and YH−S) and the self-consistency matrix (YH−h) of the human
expert. As we expected, the errors made by the artificial sys-
tem were relatively small. For the configurations presented
above, the accuracy achieved was 95.24% and 96.60%, respec-
tively, if 1 class error was tolerated (see also Fig. A.1).

3.4. Intraoperative events and DOA levels
To gain insight in the relation between the method’s prediction
and OAA/S, we investigated the relations between intraoper-
ative events and the DOA indication of the artificial system

Fig. 4 – Relation between the detected DOA by the artificial syste
the artificial system (classifier: Log(SM) ensemble of best 1%) ass
immediately after a intraoperative event. The corresponding eve
marked with (*) shows the same plot for the data segment just b
b i o m e d i c i n e 9 5 ( 2 0 0 9 ) 191–202

(Fig. 4). Meaningful relations were clearly visible and some
examples are presented in Fig. 4. “Simple action” was detected
only at DOA 4, while “Start medication” and “Coughing” were
detected mostly in DOA 4–5. “Spontaneous movement” was
associated rarely with DOA 2 (properly sedated) and DOA 3
but appeared more often in states with light (DOA 4) anes-
thesia. “Intubation” represents a very strong and disturbing
stimulus and was performed during proper anesthesia (DOA 2
or sometimes DOA 1). During this procedure some patients
exhibited an increase in the level of arousal (DOA 3) while
others remained in the area of deep anesthesia. “Increase
anesthetic” and “Reduce anesthetic” were meant to keep the
patient in a properly sedated state. “Stop anesthetic” occurs
usually at the end of the surgical procedures when the patient
is still deeply sedated but painful stimuli are not present.
Accordingly, before this event, the detected DOA level was 2
(see inset) while after the event the DOA level shifted towards
more awake.

3.5. Frequency band analysis

We tested how the information content of various frequency
bands was related to the classification performance of the arti-
ficial system. The same test and training sets were used as
above, with additional filtering applied to isolate or to reject
frequency bands of interest such as: delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–80 Hz),
and high frequencies (80–600 Hz). The additional filtering was

applied only on the data processed by the artificial system.
The data underlying MLAEP was not filtered, such that MLAEP
waveforms and, thus, the DOA segment associations remained
unchanged. For each filter setting, 5 ensembles comprising 25

m and the intraoperative events. The histograms show how
igned the DOA level to each data segment recorded
nt is indicated in the top right of each pane. The inset
efore the indicated event.
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Fig. 5 – The effects of filtering on the classification performance. The bottom part shows the frequency bands preserved
(filled rectangles) after filtering the EEG. For each frequency content upper traces represent the mean and the standard
deviation of the classification performance for each DOA level (DOA level shown on the right). The results are grouped to
emphasize: (a and b) the importance of each frequency band, (c and d) the importance of low and high frequencies, and (e
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nd f) the importance of frequencies in the theta–gamma ran

ndividual MLP networks were constructed. The average and
tandard deviation of the 5 ensemble distributions, for each fil-
er set and each DOA class, are presented in Fig. 5. We created
ets of filters in order to: isolate one frequency band (Fig. 5a),
liminate one frequency band (Fig. 5b), preserve more and
ore frequency bands starting with low frequencies (Fig. 5c),

reserve more and more frequency bands starting with high
requencies (Fig. 5d), and keep progressively more (Fig. 5e)
r progressively less (Fig. 5f) frequency bands in the theta-
amma range. For comparison, the classification performance
n the unfiltered data (Fig. 5 a–f, ALL) is shown in each case.
igure 5 illustrates a complex relation between the expression
f various frequency bands and the correct detection of dif-
erent DOA classes. For DOA class 1, individual alpha and beta
ands are less informative (Fig. 5 a, DOA 1) and either one’s
bsence facilitates classification when all the other bands are
ept intact (Fig. 5 b, DOA 1). Delta and theta bands, when taken
ogether, or in combination with both alpha and beta, pro-
ide a good discrimination of this DOA class (Fig. 5 c, DOA 1).
nother prominent peak is interestingly obtained for a com-
ination of gamma and high frequencies (Fig. 5 d, DOA 1).
mportantly, DOA class 1 is not well discriminated when all

requency bands are lumped together, but seems to be well
lassified only when low (delta–theta) or high (gamma–high)
requencies are grouped (Fig. 5 c and 5 d, DOA 1), or when
ither alpha or beta bands are eliminated while other bands
are preserved (Fig. 5 b, DOA 1). DOA class 2 is better classi-
fied when relying on individual alpha, beta, or gamma bands
than on other individual frequency bands (Fig. 5 a, DOA 2).
Nonetheless, in this case, adding progressively more bands is
beneficial for classification (Fig. 5 c, DOA 2). For DOA class 3, the
relation between different frequency bands and classification
performance is less clear, such that it is rather a combination
of multiple bands, in various configurations, that can pro-
vide informative features to the classifier (Fig. 5 a–f, DOA 3).
DOA class 4 is best detected when either very high (> 80 Hz)
or all frequency bands are preserved (Fig. 5 a, DOA 4). Most
other combinations prove to be less informative for detecting
this class. Finally, DOA class 5 is best detected when only the
gamma frequency band is kept (Fig. 5 a, DOA 5). Adding other
frequency bands mostly impairs classification. The combina-
tion of frequency bands yielding the next best performance
as compared to gamma includes the alpha, beta and gamma
bands lumped together (Fig. 5 e, DOA 5).

4. Discussion
4.1. Methodological considerations

For practical reasons the following drawbacks could not be
avoided. First, one of the drawbacks of this study is the low
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number of training examples for the less represented condi-
tions (mostly the deeply anesthetized state, and to a smaller
degree, the awake state), which are avoided during surgery.
However, the system was able to generalize, even based on
just a few examples. Second, since OAA/S scale was not suit-
able for this study, the artificial system was evaluated with
respect to the human expert, who is subject to variability
and errors. This was somehow alleviated by the relations
between the detected DOA and the occurrence of intraop-
erative events. Third, even if TESPAR does not use averaged
data, still, a quite long waveform (about 100 s) is needed
for reliable construction of S and A matrices; this could be
problematic if rapid transitions in the sedation level should
occur (e.g. when an unprecedented strong stimulus is applied
to the patient). Fourth, further studies are needed before a
conclusion can be formulated on which component (ongo-
ing activity or stimulus-induced locked/non-locked activity)
of the EEG signal is important for DOA assessment. These
studies should make use of EEG recordings with and with-
out auditory stimulation. Despite these drawbacks, we believe
that TESPAR feature extraction proves to be valuable in DOA
detection.

4.2. Mapping signals onto DOA

4.2.1. The human expert
The confusion matrix of the human expert is not ideal
(Table 1YH−h). This is expressed through an uncertainty in the
MLAEP mapping onto DOA levels. However, this uncertainty
is limited to one DOA class (Fig. A.1). There are several pos-
sible reasons for that. First, the states visited by the brain
passes throughout surgery might not be stationary and, thus,
a MLAEP might capture aspects from more than one state.
Second, the five classes defined do not have clear separation
borders. Third, some of the classes chosen here are close, from
the clinical point of view, to each other. The EEG signals, for
these cases, have similar properties rendering MLAEP-based
visual discrimination difficult (e.g. class 1 with class 2 and
class 5 with class 4). This subjectivity could have been reduced
if an OAA/S like observation-based scale would have been
available [27,36,37]. Although, OAA/S score was not assessed
we have found meaningful relations between the detected
DOA level and the occurrence of intraoperative events, which
are part of OAA/S assessment.

4.2.2. The artificial system
MLP networks were previously used in DOA detection [30].
Other studies reported better performance if two hidden layers
are used, but in our case, an extra hidden layer did not seem
beneficial. However, in all cases, grouping MLP networks in
ensembles made the mapping more robust, sometimes even
surpassing the performance achieved by the best MLP within
the ensemble.

Since we used the classification performed by the human
expert (who misclassifies usually by at most one class) to
train and test the artificial system, we expected at most

one class erroneous classification by the latter as well.
Indeed, confusion matrices between the human–human and
human–system pairs were very close to each other. Thus both
systems presented similar mapping patterns (Table 1). The
b i o m e d i c i n e 9 5 ( 2 0 0 9 ) 191–202

artificial system’s performance was very close to the self-
consistency of the reference human expert.

4.3. Features and feature extraction

During TESPAR alphabet generation, the vector quantization
eliminates the small variability present in similar epochs,
endowing the system with robustness to noise. Because the
symbols in the alphabet were ordered in ascending order
according to their duration, each symbol could be associ-
ated with a certain frequency. Generally, as the patient went
into deeper anesthesia (Fig. 2), symbols with longer dura-
tion were more frequent, and thus, lower frequencies were
more prominent in the EEG. In addition, the log nonlinearity
emphasizes the importance of these, more rare, long epochs.
Tests (Fig. 3) showed that the log nonlinearity(see Section
2.5“Feature extraction, TESPAR”) increased the separability in
the DOA domain, for both A and S matrices and thus increased
the classification performance. The system based on the A
matrix performed, however, better than the one with the S
matrix in most cases, indicating that the temporal structure
of the EEG contains useful information for DOA assessment.
All, these results validate the usefulness of TESPAR features
for DOA detection.

Regarding the frequency content of EEG during anesthe-
sia, we found that information related to DOA is mostly
distributed across frequency bands (Fig. 5). The nonlinear
classification using TESPAR and MLPs can take advantage of
multiple frequencies, such that, in general, there is a combina-
tion of multiple frequency bands that yields the best detection
results. This was particularly true for deeper anesthesia con-
ditions (classes 1 and 2), for which multiple combinations of
frequency bands across the spectrum are required for good
classification.

In states of low sedation or wakefulness, higher frequency
bands start to play a more prominent role. High frequencies
(> 80 Hz) reflect mainly muscle activity and are frequently
considered to be an artifact. Here however, we found that
their presence is beneficial. For example, frequencies >80 Hz
proved useful for the correct detection of low sedation levels
(class 4) and also contributed, in combination with other fre-
quency bands, to the correct detection of other DOA classes.
Hence, muscle activity may carry DOA-relevant information
which should not be overlooked. Indeed muscle activity was
considered useful also by the M-Entropy monitor described in
Ref. [38]. Results indicate that gamma band activity (30–80 Hz)
is very important for correctly identifying states of wakeful-
ness (class 5) and that the presence of other components,
especially of low frequencies, impairs the detection of such
states. This is highly consistent with findings that gamma
band activity correlates with visual and cognitive cortical
processing, thus representing a hallmark of the awake state
[39].

High frequency neuronal signals reflecting muscle or
gamma band activity are usually not stimulus-locked, and
hence they are not visible in MLAEP. Nevertheless, TESPAR

descriptors can take advantage of non-locked activity. The
good agreement between physiological correlates of wakeful-
ness (e.g. gamma activity) and the awake class identified with
MLAEP shows that the artificial classifier presented here can
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earn important signal features that were not originally used
y the anesthesiologists in order to classify the data.

.4. Comparison to other methods

ther time-domain approaches to EEG signal processing,
amely the zero crossing frequency [12,13] and the aperi-
dic analysis [14], have shown that certain points in the
ignal’s waveform, like minima or zero crossings, contain
OA-related information. It has been suggested [11] that one
ajor disadvantage of these two methods is that they do

ot take into account the small ripples of the waveform. In
ur case, these small ripples (the shape parameter) seemed
nimportant. However, there are several differences between
hese two methods and TESPAR. The zero crossing frequency
ries to detect the average frequency by counting how many
imes the signal crosses the zero level. The aperiodic anal-
sis describes the waveform portion between two adjacent
inima through its amplitude and frequency (reciprocal of

ts duration). Then, the frequency–amplitude pair is displayed
oncurrently for two frequency bands. By contrast, TESPAR
akes the signal into the symbolic processing domain, where
t extracts compact, fixed-size descriptors. Moreover, besides
he frequency-related information (provided by the average
ength of the epochs), TESPAR also provides information about
he temporal structure of the signal (through the A matrix).

The time-domain approach is perhaps best represented
y methods based on evoked potentials (MLAEP) such as the
-line ARX Index. Evoked potentials extract stimulus-locked

nformation that can survive an averaging procedure. Both
ngoing activity and non-locked stimulus-induced activity
re lost through averaging. TESPAR does not use the aver-
ging procedure; therefore, it has the opportunity to extract
ore information from the signal. However, further investiga-

ions are required to answer whether the ongoing activity, the
timulus-induced activity, or perhaps a combination of these
wo is informative for TESPAR.

Among frequency-domain techniques, the bispectral index
ethod is based mostly on frequency-domain signal process-

ng (although phase, or time, information is also included in
icoherence index which is a part of the bispectral index)

11]. The Narcotrend monitor uses both time and frequency
nformation in addition to entropy measurements [5], while

-Entropy monitor is based on entropy measurements [38].
here are several advantages of TESPAR over many of these,
nd especially frequency-domain, methods. First, the com-
utational effort is at least one or two orders of magnitude
maller. Second, the only requirement imposed on the signal
s to have a finite bandwidth, which is true for any signal pro-
uced by natural sources. Third, the fixed size of the TESPAR
atrices, regardless of the signal’s length, makes them perfect

andidates for a plethora of classifiers [23–25]. Finally, since
ESPAR is a time-domain method, it can detect differences in
ignals that look identical in the frequency-domain [28].

.5. Concluding remarks
n intimate relation exists between the TESPAR processed EEG
nd DOA states of the patient undergoing general anesthe-
ia. Indeed, the classification performance of DOA obtained
i o m e d i c i n e 9 5 ( 2 0 0 9 ) 191–202 199

with the artificial system reached very close (about 2% dif-
ference) to the mapping performed by the human expert,
which indicates that DOA-relevant information is captured by
TESPAR matrices. However, to reliably extract this informa-
tion, we need to cope with the nontrivial relation between
the descriptors and the DOA state. In order to perform the
mapping, we took advantage of the human expertise, which,
although biased, offered the artificial system, the possibility
to unravel such a nontrivial relation. As the artificial system’s
performance is limited by the imperfect human expert, fur-
ther studies employing more data, a more objective DOA scale,
and perhaps unsupervised learning are required to asses the
real value of this method and whether the ongoing and/or the
stimulus-induced activity are captured by it.

TESPAR offers small, compact, fixed-size, and highly infor-
mative EEG descriptors providing, thus, a promising asset to
DOA detection which could enhance already existing DOA
monitors. TESPAR is perhaps most valuable in applications
where light computational resources are desirable.
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discussions and comments on the manuscript.

Appendix A

A.1. Anesthesia protocol

After oral premedication with 7.5 mg midazolam 30 min prior
to general anesthesia, patients were transferred to the oper-
ation theater. Patients were placed supine, and physiologic
monitoring according to anesthesiologic standards, consist-
ing of a 3 lead electrocardiogram (ECG), pulse oximetry, and
oscillometric blood pressure monitoring were installed. An
18G cannula was inserted into a large forearm vein, and
an infusion of isotonic saline solution was started. Then a
priming dose of nondepolarizing muscle relaxant (atracurim
besilate 0.01 mg/kg) and a loading dose of an opioid (left to the
discretion of the attending anesthesiologist: fentanyl 0.1 mg,
sufentanil 0.01 mg, alfentanil 1 mg or remifentanil contin-
uously 0.1 mg/h) were applied i.v. and preoxygenation was

started with pure oxygen via face mask in a calm environment.
An equilibration period of 2 min was allowed, regardless of the
opioid used. General anesthesia was induced by intravenous
injection of thiopentone (4–6 mg/kg) or propofol (2–4 mg/kg)
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until the loss of the eyelid reflex occurred and no response
to loud verbal commands were visible. All patients were ven-
tilated manually via face mask with pure oxygen. Muscle
relaxation was induced with atracurium besilate (0.05 mg/kg)
i.v. Tracheal intubation was performed 2 min after applica-
tion of the muscle relaxing agent. All patients were ventilated
mechanically, with minute ventilation adjusted by capnog-
raphy in order to ensure normocapnia with a mixture of
oxygen in air sufficient to provide an SpO2of greater than 97%.
Balanced anesthesia was maintained with either isoflurane,
sevoflure, desflurane, or propofol (the choice of substance
was left to the discretion of the attending anesthesiologist),
in combination with the opioid chosen for induction. The
dosage of the hypnotic agent was based on clinical routine,
adjusted by the occurrence of motor signs of wakefulness,
while the further delivery of opioids was performed pre-
emptively prior to periods of anticipated painful surgical
stimulations, adjusted by autonomic signs of inadequate anal-
gesia (rise in heart rate, blood pressure, sweating, and tear
production). The responsible anesthesiologist was blinded
towards the recorded auditory evoked potential (AEP) sig-
nal. No further muscle relaxants were applied. At the end of
the surgical procedure, the delivery of all anesthetic agents
was discontinued and mechanical ventilation was terminated
when sufficient spontaneous breathing returned. The patients
were given verbal commands repetitively every 2 min. After
the first response to the verbal commands, patients’ tracheas
were extubated and patients were allowed to breath pure oxy-
gen via face mask.

A.2. Data acquisition

Electrodes for AEP monitoring and headphones were applied
after having inserted the iv-line. For auditory stimulation, rar-
efaction clicks of 98 �s duration and an intensity of 95 dB
(SPL) were presented binaurally to the patient, with a con-
tinuous repetition rate of 9.1 Hz via headphones (TDH 39,
Toennies/Viasys healthcare, Hoechberg, Germany). AEP were
recorded by silver/silver-chloride adhesive electrodes (Neu-
roline 7200 00-S, Ambu/Medicotest, Denmark) placed after
skin preparation with acetone, according to the international
10/20 system. Inter-electrode impedances were kept below
5 k �. The electrodes were connected to a preamplifier (POD,
Siemens Medical, Erlangen, Germany) with short connecting
cables wired to feed 4 recording channels (A1/Fp1, A2/Fp2,
A1/Cz, and A2/Cz) with Fpz as common ground, according to
the 10/20-system [26]. The signals were amplified and digi-
tized (sensitivity 0.0170 �V, sampling rate 4 kHz) within the
preamplifier; the digital signal was transmitted to the record-
ing system via broadband glass fibre cables. On the recording
system, the data were stored on a hard disc and, for qual-
ity control purposes, the raw EEG signal and averaged AEP
epochs of 500 sweeps were displayed on a screen. All intraoper-
ative events (awake, induction, intubation, tears, spontaneous
breathing, coughing, response to complex request, and so on)
were coded by keystrokes on the recording system by the

investigator and stored along with the AEP-data. An interval
of 2 min was allowed for the patients to rest with closed eyes
for collection of baseline measurement variables. Data acqui-
sition continued continuously throughout induction, surgical
b i o m e d i c i n e 9 5 ( 2 0 0 9 ) 191–202

procedures, and wake-up procedure after surgical procedures
had been finished. Data acquisition was stopped after the
patients had regained consciousness and orientation with
regard to the patient’s name.

A.3. Artefact detection and removal

After rejection of 50 Hz power line frequency, we obtain EEG
signals with a band of 0.5–600 Hz. Muscles, eye movements,
heart electrical activity, head movement and electrical devices
can generate electrical artefacts in the EEG recordings [40]. To
detect the artefacts, we utilized the amplitude of the recorded
signal in two frequency bands. The first band, including fre-
quencies from 0.5 to 600 Hz, was used to detect artefacts
specific to the EEG like fast drifts of the potentials. The second
frequency band focuses on artefacts in the high frequency-
domain, from 100 to 600 Hz, that can be caused by the surgical
manipulation on the patient (e.g. cuttering). The advantage of
the second high frequency band is that the biological signals
have rather low amplitudes in this frequency-domain, which
allows for higher sensitivity for artefact detection. For each of
the two filtered signals we rejected each stimulus interval of
110 ms length for which the signal amplitude exceeded one
of the two defined thresholds. The first threshold was set to
25 mV and corresponds to a limit that is not expected to be
exceeded not even in recordings with very high noise. The sec-
ond threshold, for each recording, corresponded to a value of
four times the standard deviation of the amplitude distribu-
tion. It was introduced to detect rare and very high amplitudes
likely to be non-biological. The combination of adaptive deci-
sion stage and robust feature extraction methods should allow
the artificial system to cope fairly well with the remaining
noise. For further selection, the data which, in the anesthesi-
ologists’ opinions, produced MLAEP-containing artefacts were
excluded from this study.

A.4. The human classifier

The artificial system (TESPAR + MLP) uses the human expert
(medic) to learn the association between the EEG signal and
DOA. Before judging the classification accuracy of the arti-
ficial system, we must assess how well the human model
classifier performs. For this purpose, in addition to the orig-
inal set (600 segments), each anesthesiologist was asked to
reclassify a subset of 300 randomly selected segments. Both
anesthesiologists were unaware that these control segments
were already presented before for classification. This allowed
us to see how the same segments are classified by the same
anesthesiologist, on two different occasions. Anesthesiologist
A validated 284 segments, out of which 70.77% (201) segments
were classified in the same way, while anesthesiologist B val-
idated 246 segments, out of which 68.29% (168) segments
were classified in the same way (Fig. A.1). We considered
these scores as a measure of self-consistency for the human
experts. In Table 1 the confusion matrix of anesthesiologist

A (YH−h) shows in more detail the difference in classifica-
tion behavior. It shows, in percentage, how many times an
initial class i is classified as class j in the control classifica-
tion. In the ideal case, when the human classifier is perfectly
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Fig. A.1 – The agreement between classifications performed on two different occasions on the same data by the same
anesthesiologist. It shows how the differences between the DOA classes assigned on the two occasions are distributed. In
more than 98% of the cases, the classification agreement is in wi

Table A.1 – The comparison between two human
experts. It shows, in percentages, how segments
classified as DOA class Hi by anesthesiologist A are
classified as DOA class Bj by anesthesiologist B.

Expert A–B
(YH−B)

H1 H2 H3 H4 H5

B1 33.33% 2.76% 1.72% 1.61% 0.00%
B2 54.55% 81.89% 46.55% 11.29% 0.00%
B3 12.12% 10.24% 44.83% 38.71% 23.53%
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on predicted propofol concentrations and bispectral index
B4 0.00% 3.54% 6.03% 41.94% 70.59%
B5 0.00% 1.57% 0.86% 6.45% 5.88%

onsistent with himself, the matrix should be 100% on the
iagonal.

There has been some degree of disagreement between the
wo human classifiers. The difference (more than 10%) in the
umber of segments rejected by the anesthesiologists was an

ndication that they perform the classification differently. We
ested to what degree they agreed with each other (Table A.1),
nd we found that in 61.83% of the cases they assigned the
ame segment to the same DOA condition. Segments that were
onsidered to contain artifacts by any of the anesthesiologists
ere eliminated from this analysis. Table A.1 shows that the

econd anesthesiologist tends to assign deeper DOA levels in
omparison to the first anesthesiologist.
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