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The assembly hypothesis suggests that information processing in the cortex is mediated by groups of neurons
expressed by their coordinated spiking activity. Thus, the unitary events analysis was designed to detect the presence
of conspicuous joint-spike events in multiple single-unit recordings and to evaluate their statistical significance. The
null hypothesis of the associated test assumes independent Poisson processes and leads to parametric significance
estimation. In order to allow for arbitrary processes here we suggest to base the significance estimation on trial
shuffling and resampling. In this scheme the null hypothesis is implemented by combining spike trains from
nonsimultaneous trials and counting the joint-spike events. The coincidence distribution serving for the significance
estimation is generated by repetitive resampling. The number of all possible recombinations, however, grows
dramatically with the number of trials and neurons and thus is not practical for a user-interactive implementation
of the analysis. We have suggested a Monte-Carlo-based resampling procedure and demonstrated that the procedure
yields an appropriate estimate of the distribution and reliable significance estimation. In contrast, here, we present
an exact solution. Rewriting the statistical problem in terms of certain macrostates, we are able to systematically
sample the coincidence counts from all trial combinations. In addition we restrict the generating process to those
counts forming the relevant tail of the distribution. The computationally effective implementation uses the concept
of partitions. © 2003 Wiley Periodicals, Inc.
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1. INTRODUCTION

T he assembly hypothesis postulates[1] that information

processing in the cortex is mediated by groups of neu-

rons, meanwhile supported by a number of experimen-

tal studies (see[2] and references therein). This hypothesis is

addressed by unitary event (UE) analysis[3,4] enabling the

study of the relation of spike synchronization to behavioral

events.[4,5–7] In the UE-analysis, empirically observed co-

incidence counts are evaluated for their significance based

on a Poisson distribution (see[4,8] for discussion). The ex-

pectation value parameterizing the distribution is calcu-

lated by the product of the firing rates of the contributing
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neurons. Implicit in this procedure is the assumption that

spike trains are generated by Poisson processes. However,

experimental data often fail to be compatible with this as-

sumption (e.g.,[9 –11]). Thus, in order to consider the orig-

inal, temporal structures of the spike trains, we suggest to

replace the significance test described above by a nonpara-

metric test. The basic idea is to base the null hypothesis of

independence on trial shuffling. For the significance esti-

mation of the empirically found coincidences in M trials, we

determine the probability distribution of chance coinci-

dences on the basis of the coincidence counts occurring in

the set of potential M trial combinations. The derivation of

the probability distribution employs resampling proce-

dures, typically leading to large numbers of different trial

combinations. However, our goals are (1) to use the UE-

analysis in user-interactive manner, (2) to perform the UE

analysis in time-resolved fashion (sliding window proce-

dure,[4]), which requires repetitive generation of coinci-

dence distributions, and (3) to carry out the analysis for

many different coincidence patterns. Taken together, the

procedure for generating the coincidence count distribution

is subject to strong time constraints.

One possible solution is to use an approximate Monte-

Carlo method for successive random resampling.[12] This is

contrasted by the analytical approach for exact significance

estimation presented here, based on a concept (macrostates

versus microstates) borrowed from statistical physics. Al-

though the resulting combinatorics is still demanding, it

permits the construction of computationally feasible solu-

tions.

In section 2 we introduce the required notation and

show how, in principle, significance can be estimated in

exact fashion (section 2.1.), followed by a brief description

of the earlier Monte-Carlo approach (details can be found

elsewhere[12]). In section 3 we introduce our new approach,

which derives the significance measure of joint-spike events

on the basis of combinatorial resampling. In section 4 we

present an effective implementation of this approach using

the idea of limited partitions where standard algorithms for

the partitions of an integer are supplied with additional

constraints. Finally, the new scheme is discussed in the light

of earlier approaches.

2. NONPARAMETRIC SIGNIFICANCE ESTIMATION OF
JOINT-SPIKE EVENTS
To incorporate the null-hypothesis of independence, trials

of the original data set are shuffled to combine nonsimul-

taneously recorded spike trains. Each tuple of shuffled spike

trains yields a count �s of joint-spike events. The S possible

shuffled combinations of spike trains (all trial indices being

different) yield S counts � composing the list �0 � [�] (see

box A in Figure 1).

For N � 2 neurons we have

�0 � �� j�i1,. . .,iN��ik � il, with ik, il � 1 . . . M�, (1)

where the ik are trial numbers and M is the total number of
trials in the data set (the arbitrary bijective function j serves
to simplify the index of � by mapping the index vector
(i1, . . . , iN) to an integer in the range 1, . . . , S). Therefore �0

is composed of a nonunique, nonordered list of integers 0 �

�j � �max with �max � max(�0) consisting of

S � ��0� �
M!

�M � N�!
(2)

elements [see Figure 2(A) for the dependence of S on M].
In order to estimate the significance of the empirical

number of joint-spike events nemp observed in M trials of
simultaneously recorded spike trains, we need to know the
probability distribution Ps of the total number of joint-spike
events �� occurring in M trials under the assumption of
independent processes. Ps can be constructed by drawing
multiple sets of M samples from �0 using resampling pro-
cedures[13] [see Figure 1(B)]. Two available procedures are
explained in sections 2.1 and 2.2. Having derived the distri-
bution of coincidence counts Ps, we can determine the
significance of nemp by calculating the joint p-value,[3] i.e.,
the probability � of observing nemp or an even larger count
[see Figure 3(A) for an illustration]:

� � p��� � nemp� � 1 � p��� � nemp� � 1

� �
k�0

nemp�1

Ps�k� with nemp � �
i�1

M

�i
s. (3)

The �i
s denote the M coincidence counts of the original

(simultaneous) data set.

2.1. Ideal Estimation of the Probability Distribution
The most simple, and conceptually straightforward way of
calculating Ps is to systematically resample (with replace-
ment) all possible sublists x of �0 with exactly M elements,
replace each list x by the sum of its elements, and compute
the relative frequencies of identical counts. In the following
we introduce some definitions to describe this process more
formally.

Definition of Microstates (x)
All possible nonunique lists, consisting of M elements from
�0 using replacement, form microstates:

xi � ��*i1, . . . , �*iM� with �*ij � �0, (4)
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FIGURE 1

Flow chart illustrating the different procedures of combined shuffling and resampling (CSR) for significance estimation of joint-spike events. Spike train data
from electrophysiological experiments enter the initial steps of trial shuffling (A) and resampling (B), common to all of the following three procedures (C,
D, E). Ideal estimation of the coincidence probability distribution is achieved by the counting process (C) based on all possible M trial combinations
(systematic resampling), and equally by the procedure of combinatorial resampling (F) using the concept of macrostates. (D) An approximative estimate of
the distribution by Monte-Carlo resampling. The counting process (ideal estimation, C) as well as the Monte-Carlo approximation (D) operate directly on the
list � containing the coincidence counts from all possible M trial combinations. In F, � is expressed in terms of macrostates, collective representations of
a set of microstates with the same multiplicities 	v of the elements (coincidence counts) v. All three procedures lead to an estimation of the probability
distribution Ps or P̂s, respectively, that reflects the H0-hypothesis of independent parallel spike trains, which is used to estimate the significance of the
empirically observed number of joint-spike events in M trials. Combinatorial resampling (F) avoids the need to access the large number of elements occurring
in the definition of � (B) by combining microstates to macrostates thereby dramatically reducing the computational costs.
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where the asterisk labels measures based on resampling or
boot-strapping.

Definition of List �

For a microstate xi we denote the total number of joint-
spike events as

�� *i � �
j�1

M

�*ij, �*ij � xi

� is then defined as the (nonordered and nonunique) list of
all �� *i:

� � �� *i�i � 1, . . . , B with B � SM. (5)

The ideal estimate of the probability distribution of the total
number of joint-spike events in M trials Ps(�� *) is then given
by the normalized histogram of occurrence frequencies nk

of identical elements k in � [see Figure 1(c)]:

Ps�k� �
nk

B
. (6)

Unfortunately, aiming at a user-interactive analysis of ex-
perimental data, the feasibility of this approach is limited,
because the length of � dramatically increases with increas-
ing number of trials and/or neurons [Figure 2(B)] and thus
is computationally impractical.

2.2. Approximative Estimation of the Probability
Distribution
As an alternative approach to the systematic resampling
illustrated above, the probability distribution (Eq. 6) can be
estimated using a Monte-Carlo approach.[12] Instead of
generating Ps based on all elements of �, a random sublist �


of � consisting of 
 		 B elements is used to obtain an
estimator P̂s of Ps [see Figure 1(D)]. To avoid the approxi-
mate nature of �
 below, we present a procedure to directly
compute the ideal estimator of Ps on the basis of � with the
help of combinatorics.

3. ANALYTICAL DERIVATION OF THE SIGNIFICANCE OF
JOINT-SPIKE EVENTS BASED ON COMBINATORIAL
RESAMPLING
In this section we describe how the combinatorial explosion
underlying the ideal estimate of the probability distribution
(section 2.1) can be considerably reduced by using a collec-
tive description: macrostates instead of microstates. First
we introduce appropriate macrostates; then we derive Ps

using the occupation probabilities of these macrostates.

3.1. Compact Description by Macrostates
Motivated by approaches used in statistical mechanics we
intend to describe a list of microstates distinguished by a
common property by a single macrostate. Obviously, the
sum of coincidence counts from M trials �� *i (Eq. 5) is inde-
pendent of the arrangement of operands. With all list posi-
tions being indistinguishable we can collectively describe all
microstates exhibiting the same sequence of coincidence

FIGURE 2

(A) Size S of the list �0 that contains coincidence counts resulting
from all possible single trial compositions. S is a function of the
number of trials M and the number of neurons N. (B) Total number B
of individual states (microstates) that can be composed of M elements
from the list �0. B increases dramatically with the number of trials M,
and with the number N of neurons. (C) Total number of macrostates

 that can be constructed from the list �0, with �0

� ��� � �0, . . . , �max�]. 
 increases with the number of trials
M. In contrast to the list �0 and to the list of possible microstates, the
size of the set is independent of the number of elements in �0 and
of the number of neurons. The number of macrostates that can be
constructed is dependent on the value of the maximal element �max

of �0. 
 as a function of M is shown for �max � 1, . . . , 7. The values
are representative for independent data sets of about 100-ms duration
with spike rates in the physiological regime.
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counts or a permutation of this sequence by a single mac-
rostate �j [see Figure 1(E)]:

{x�x � �*�1�i1�, . . . , �*�M�iM�} 3 �j�i1,. . .,iM�

� �	0, 	1, . . . , 	�max �, (7)

with � denoting all possible permutations of the elements of
a distinguished xi and j an arbitrary bijective index function
mapping the set represented by xi to a unique macrostate �j.
Because in most experimental conditions the maximal
number of coincidences �max is smaller than the number of
trials (M), a macrostate can be represented in a compact
way by representing the elements � � 0, . . . , �max in a
macrostate by their multiplicity (	�). Consequently we get

�k � � l for k � l � 1, . . . , 
. (8)

with 
 different macrostates.
Note that different macrostates �j as well as different

microstates xi may have an identical total number of coin-
cidences �� *i. To simplify the notation we call xi

k a microstate
with k � �� *i and correspondingly �j

k (with j � 1, . . . , 
k) the


k macrostates with identical associated �� *i. By using mac-
rostates for the description instead of microstates the num-
ber of states that need to be considered for the construction
of Ps reduces considerably from B elements in � to 
 dif-
ferent macrostates [Figure 2(C)]. A worst case estimate of
the number of macrostates is dependent on the total num-
ber of trials and the maximal number of spikes n found in
the recorded data set: 
 � (M  1)(n1). The maximal
number of spikes n (e.g., a function of the firing rate, the
total duration of the considered data set, time resolution of
the data) gives an upper limit for the coincidence count
within a trial, i.e., n.

3.2. Probability of Macrostates
In order to use macrostates for deriving Ps, we calculate the
occurrence probability of an individual macrostate on the
basis of the occurrence probabilities of the associated mi-
crostates. The probability to observe a microstate xi

k simply
is 1/SM. However, many microstates xi

k may exhibit the
identical sequence of coincidence counts because of the
limited number of different coincidence counts in �0. Mi-
crostates are defined by the identity of the single neuron
trials they are composed of (Eq. 1), not by the sequence of

FIGURE 3

(A) The significance of the empirical number of joint-spike events nemp is illustrated as the black area of the probability distribution for �� * � nemp. We
can constrain the computational costs of calculating the significance by computing only the macrostates and their probability of occurrence of the
corresponding tail of the distribution (black). Depending on the minimal distance of nemp to the maximal or minimal possible number of coincidences
bounding the distribution, either the macrostates for �� * � nemp or for �� * � nemp are computed to derive the significance. (B1–B3) The number of required
macrostates 
s for the calculation of the significance depends on the number of trials (B1, M � 20; B2, M � 36; B3, M � 70) and on the maximal
element �max in �0. For a given parameter set M and �max, the number of required macrostates 
s shows a symmetrical dependence on nemp: the closer
nemp to either the minimal or the maximal extend of the distribution, the less macrostates are required. The more central the position of nemp to the
distribution, the more macrostates are required. The larger �max, the larger the mean of the distribution and their extend, and thus the more macrostates
need to be computed.
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coincidence counts. Let us denote the collection of mi-
crostates with identical sequence by x̃i

k to remove this am-
biguity. The probability to observe x̃i

k is given by the product
of the occurrence probabilities p(v) of the elements v(v �

�0) composing the list x̃i
k. The p(v) can be estimated from

the number of occurrences nv in �0 normalized to the total
number of elements in �0, i.e., p̂(v) � nv/S. Hence,

p�x̃i
k� � �

l�1

M

p̂�vil� � �
l�1

mi

p̂�vil�
	�vil�, (9)

with {vil} the set of unique elements in x̃i
k with multiplicities

	l and mi � �{vil}�.
For deriving the occurrence probability of the corre-

sponding macrostate, the possible number of permutations
of x̃i

k (i.e., distinguishable microstates), given by the multi-
nomial coefficient, has to be taken into account:

p�� j
k� � M! �

l�1

mi 1
	�vil�!

p�x̃i
k�. (10)

Finally, the probability to obtain k coincidences Ps(k) is
given by the sum of the occurrence probabilities of all
individual macrostates (Eq. 10) that have identical sums k:

Ps�k� � �
j�1


k

p�� j
k�, (11)

with 
k the number of different macrostates with identical
k [summarized in Figure 1(F)]. Again, we are in the position
to calculate the significance of an empirical number of
joint-spike events using Equation 3. However, now this does
not require the construction of all B microstates but restricts
the computation to only 
 macrostates [see Figure 2(B,C)
for comparison].

3.3. Significance Estimation
The computational effort of computing the joint p-value
(Eq. 3) can further be reduced by only considering the
macrostates forming the respective tail of the distribution
[e.g., Figure 3(A)]. Typically, the relevant tail of the distribu-
tion is not known beforehand. However, we can make use of
the following constraints. First, we calculate the minimal
[M � �min � M � min(�0)] and the maximal [M � �max � M �

max(�0)] number of coincidences that bound Ps. Second,
the relevant tail of the distribution is determined by the
minimal distance of nemp to the two bounds. Thus, 
s mac-
rostates are required for the significance test p(�� * � nemp):


s � min�
1s, 
2s� with 
1s � �
k�nemp

M��max


k; 
2s � �
k�M��min

nemp�1


k

(12)


k�0 � 1 and �max � max��0�. (13)

Obviously, the number of elements 
s required to compute
the statistical significance depends on the empirical num-
ber of coincidences nemp, the number of trials M, and the
maximum value �max in �0, as illustrated in Figure 3(B1–
B3), for the case of �min � 0. Again, the number of elements
that need to be computed reduces compared with the total
number of macrostates 
 [Figure 2(C)].

4. EFFECTIVE IMPLEMENTATION OF THE SIGNIFICANCE
TEST

4.1. Limited Partitions
The basic idea of a computationally effective implementa-
tion of the above described scheme is to use efficient stan-
dard algorithms to compute all macrostates associated with
a total number k of joint-spike events. Lists of integers that
have identical sums remind us on the concept of “parti-
tions”[14,15] [see Figure 4(G)]. A partition of an integer k is
defined as a list of m strictly positive integers that sum up to
k. The elements of a partition are composed of vl � 1, . . . ,
k with replacement. The element 0 is excluded and individ-
ual partitions of the same integer in general do not have the
same number of elements.

In order to compute macrostates �j by making use of the
concept of partitions, we define “limited partitions” that
consider additional constraints given by our data sets. First,
the number of trials M determines the number of elements
in a partition to m � M. Second, the set Q0, i.e., the unique
set of elements in �0, from which we form partitions is
limited in the sense that Q0 does not necessarily contain all
elements 1, . . . , k. In addition, we need to consider that the
set Q0 may contain the zero element, which is excluded
from partitions by definition. Thus, in order to match mac-
rostates �j with M elements onto partitions with mj oper-
ands, mj

0 � M � mj zeros are being added. Trivially, Equa-
tions 9 and 11 still hold.

Based on the concept of partitions, we now have a tool at
hand to compute the above introduced macrostates. Be-
cause partitions can be computed for individual k, we are
able to generate macrostates to derive the complete prob-
ability distribution Ps (Eq. 11) or to restrict the derivation of
macrostates to the ones that are needed for the relevant tail.
Efficient but computationally still demanding algorithms, to
sequentially generate all existing partitions of an integer k
do exist.[14,15]

4.2. Look-up Tables for Macrostates
Instead of computing the partitions online, one can still
save computation time during user interactive application
by precomputing the required limit partitions. A single
look-up table contains the data for one limited partition,

6 C O M P L E X I T Y © 2003 Wiley Periodicals, Inc.
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with parameters number of trials M and maximal number
of coincidences �max in the shuffled trials. The number of
trials constrains the maximal number of operands per
partition, i.e., ML � M. The maximal value �max in Q0

constrains the maximum value �max
L to be taken into

account in the limited partition. The limited partition is
formed from operands in the range of Q0

L � 1, . . . , �max
L ,

with L indicating the parameters for a limited partition
[see also Figure 4(H)]. Thus, to obtain the complete prob-
ability distribution Ps, we have to precompute all limited
partitions P�k�ML,�max

L

for k � 0, . . . , M � �max
L . For a

specific data set, we can use the corresponding look-up
table (for a given ML and �max

L ) restricted to the multi-
plicities available. This also implies that Q0

L does not have
to correspond to the experimentally observed Q0. In case
Q0 � Q0

L and �max � �max
L , the Equations 10, 11, and 12

still hold with probability p̂(v) � 0 because of v � Q0. In

case of �max
L 	 �max, the precomputed look-up tables do

not include all required macrostates, and the additionally
required macrostates have to be computed online. The
latter usually is computationally too demanding for an
interactive analysis and needs to be avoided, by choosing
�max

L quite conservatively at the time the look-up tables
are generated.

For a rough estimate of the probability that �max
L 	 �max,

one may assume that the spike trains can be described by
independent Poisson processes, leading to a description of
the coincidence distribution by a Poisson distribution pa-
rameterized by the expected number of joint-spike events.
The expectation value in turn in determined by the length of
the analysis window, the spike rates, and the number of
observed neurons.[3] Given the distribution, we can com-
pute the probability to observe a value �max greater than an
available �max

L .

FIGURE 4

Flow chart to illustrate the computation of macrostates based on the concept of partitions and limited partitions. (G) Concept of a partition of an integer
k, here demonstrated for k � 5. There are 7 different ways of computing the sums of integers that lead to a total of 5 given the elements 1, . . . , k. (H)
Concept of the limited partition of an integer k constrained by the number of allowed operands M and the upper boundary �max for each operand. Because
in the example the number of trials is limited to 3, only partitions with 3 elements are allowed to be formed. In addition, the values of the elements are
limited to �max � 4 here, and thus, e.g., the partition P1 (5) from box G is excluded. (I) illustrates the mapping of limited partitions to macrostates and the
constraints for precomputed macrostates given by the maximal number of operands per partition M L � M and the maximal value �max

L . Compared with
the concept of partitions, zero elements have to be added to ensure the existence of M elements.

© 2003 Wiley Periodicals, Inc. C O M P L E X I T Y 7
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5. DISCUSSION
The significance test in UE analysis can be formulated using

a nonparametric approach based on trial shuffling and sub-

sequent resampling of the coincidence counts.[12] How-

ever, as shown here, the combinatorics of all possible single

trial compositions increases dramatically with the number

of neurons and the number of trials. This contravenes our

goal of a user-interactive usability of the UE analysis, per-

formed in time-resolved fashion to investigate the dynamics

of cortical processes. As one possible solution we suggest-

ed[12] a Monte-Carlo resampling procedure. The method

allows for reliability tests of the significance estimation and

is well calibrated.

In this article we derived an effective procedure to

calculate an exact significance estimate for joint-spike

events in the context of combined trial shuffling and

resampling (CSR). We have shown that the required num-

ber of terms can considerably be reduced by reformulat-

ing the problem in terms of certain macrostates instead of

microstates. Further restrictions can be made by limiting

the calculation to the subset of macrostates, which com-

prise the area of the coincidence distribution relevant for

significance estimation. Finally, for the implementation

of the calculation of macrostates, we make use of the

concept of partitions. By defining limiting partitions we

are able to adjust our problem to algorithms for the

sequential computation of partitions available in the lit-

erature.[14,15] Usage of look-up tables for the limited

partitions helps to further speed up the computation.

Computationally a macrostate is about twice as expensive

as a microstate in the Monte-Carlo approach. As shown

in[12] in the order of 10,000 Monte-Carlo steps (mi-

crostates) are appropriate to estimate Ps for a test level of

5%. For more strict levels, the number of steps needs to

be increased. Thus, the exact combinatorial method has

comparable costs [Fig. 3(B)]. The main advantage is its

ideal nonapproximative nature, becoming more relevant

at strict test levels.

Because of the combination of the improvements pre-

sented here we are now able to apply the nonparametric

significance test based on the exact coincidence distribution

in user-interactive manner.
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