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Abstract

One of the key findings supporting the assembly hypothesis was found in recordings from the primary motor cortex of behaving

monkeys involved in a delayed pointing task [A. Riehle, S. Grün, M. Diesmann, A. Aertsen, Spike synchronization and rate modulation

differentially involved in motor cortical function, Science 278 (1997) 1950–1953]. Based on the unitary event (‘UE’) method, the authors

have shown that excess coincidences between simultaneously recorded neurons occur dynamically at behaviorally relevant points in time.

However, sensitivity of the UE method for non-stationarities and regularity of spike trains caused fear that the results presented might

be, at least in part, false positives. We reanalyzed the same data with the new non-parametric method NeuroXidence, which is robust

against firing-rate modulations, rate changes across trials, regularity or burstiness, as well as low rates. Our results based on

NeuroXidence confirm the results presented in Riehle et al. Spike synchronization and rate modulation differentially involved in motor

cortical function, Science 278 (1997) 1950–1953 and demonstrate behaviorally modulated excesses of coincidences on a time scale of

3–5ms.

r 2006 Published by Elsevier B.V.
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1. Introduction

In recent years, there has been a great deal of
controversial discussion about the assembly hypothesis.
On the one hand, evidence for fine-temporal structure in
spiking activity is accumulating. On the other hand, there
are still concerns about the appropriate analysis techniques
to demonstrate the existence of precise temporal coordina-
tion of spiking activities of neurons and to diminish the
fear of false positives due to violations of inherent
assumptions of the analysis method [2,5,13]. One of the
key findings that supports the assembly hypothesis was
found in recordings from the primary motor cortex of
behaving monkeys involved in a delayed pointing task [12].
It was shown that excess joint-spike activity of simulta-
neously recorded neurons occurs dynamically at behavio-
e front matter r 2006 Published by Elsevier B.V.
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rally relevant points in time. The analysis of the data was
based on the unitary event analysis method (‘UE’ ; [3,4]).
75
2. UE method

The core idea of the UE method is based on a statistical
hypothesis test that compares the amount of empirically
measured coincidences within simultaneously recorded
neurons with the expected number. The latter is estimated
based on the null-hypothesis (H0) that assumes that the
recorded spike trains within the analysis window can be
described by independent and stationary Bernoulli pro-
cesses [3]. To compare the expected and the empirical
numbers by a statistical significance test, the UE method
assumes the expected numbers to be Poisson distributed [3].
Thus, a violation of H0 can have different causes: spikes of
the simultaneously recorded neurons are correlated, or
individual spike trains violate inherent assumptions of the
method. Of course, the latter has to be avoided because this
77
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may lead to false positives and thus, to false interpretation
of the data. Specifically, features of experimental data, like
non-stationarity in time or across trials [4,5], latency
(co-)variation [2,5], and/or deviation from Poissonian
processes that may be induced by temporal structures
within individual spike trains (‘auto-structure’) [1,4,7,8,10],
may lead to false-positive results.

This caused the concern that experimental evidence of
precise temporal coordination of spiking activities might
actually be based on false positives. Therefore, we
developed a number of additional procedures to increase
the robustness of the UE method by reducing the number
of assumptions. We introduced the shuffling of spike
trains, in combination with bootstrapping, to account for
the auto-structure of spike trains and their consequences
for the distribution of the expected coincidences used for
the significance test [10]. The drawback, however, is that
the shuffling of spike trains assumes rate stationarity across
trials.

To account for non-stationarity across trials, we
suggested estimating the expected coincidences and their
distribution by estimating the firing rates on a trial-by-trial
approach. Numerically this can be accounted for by
shuffling the individual spike times within each trial and
analysis window for each neuron [5]. This approach also
compensates for co-variation of firing rates across trials.
However, it does not consider the auto-structure of
individual spike trains, e.g. a tendency for regularity or
burstiness. As a consequence, both additional procedures
[5,10] are not fully robust against features of experimental
spike trains, since they assume either stationary processes
across trials or do not account for the full auto-structure.
This motivated the development of a new approach, called
NeuroXidence [11], that accounts for both features
simultaneously and is completely non-parametric.
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3. NeuroXidence

NeuroXidence is, likewise the UE method, based on a
hypothesis test that compares the expected and the
empirical numbers of coincidences occurring in simulta-
neously recorded spike trains [11]. It detects fine-temporal
cross-structure on a time scale tc (e.g. tc ¼ 5ms) that is not
explained by either the auto-structure of individual spike
trains or the cross-structure, which may exist on a time
scale slower than tr (e.g. tr ¼ 15ms). NeuroXidence utilizes
surrogate data to derive the statistical significance of the
empirical number of joint-spike events. The surrogate data
sets are obtained from the original spike trains by
displacing each spike of an individual spike train by the
same time interval �t;n. The random variable �t;n is drawn
independently for each neuron (n) and for each trial (t)
from a uniform distribution between �tr=2 and tr=2. Thus,
random displacements �t;n are bounded by a lower and an
upper limit:
Please cite this article as: G. Pipa, et al., Validation of task-related excess o
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pð�t;nÞ ¼

1

tr

for �
tr

2
o�to

tr

2
;

0 else:

8<
: (1)

In contrast to the random temporal displacement (or
‘dithering’) of each individual spike [6], which applies
changes to the original temporal structure of the spike
trains, NeuroXidence preserves the original auto-structure.
Thus, fine-temporal cross-structure on a time scale tc is
mainly destroyed in the surrogate data, while cross-
structure slower than the time scale tr (e.g. rate or latency
covariation), as well as the full auto-structure of each
individual spike train, is preserved. To assess a deficiency
or an excess in the frequency of coincidences for a
particular set of neurons, we compare the frequency of
their occurrence in the original data set f tðorgÞ to their
frequency in the surrogate data set f tðsurÞ by computing
the difference Df t. Df t is determined for each trial to assess
its variability across trials:

Df t ¼ f tðorgÞ � f tðsurÞ for trial t ¼ 1 . . .T and

D̄f t ¼
1

S

XS

s¼1

Df t;s. ð2Þ

To improve the sampling of the chance frequency
occurring in surrogate data that reflects H0, NeuroXidence
allows the use of multiple ðSÞ surrogates. Thus, for S41,
the difference Df t becomes the average difference between
the original data and the S surrogates D̄f t. A value of D̄f t

larger than zero indicates an excess of coincidences in the
original data set. In the case of the evaluation of
coincidences between one pair of neurons, the value of
D̄f t is equivalent to the difference of the area under the
curve of the cross-correlogram between �tr=2 and tr=2 of
the original spike trains and the more smooth cross-
correlogram obtained from the surrogate data. To test if
coincidences are reliably increased across trials, NeuroXi-
dence tests if the median of D̄f t, obtained for all trials
t ¼ 1 . . .T , is significantly larger than zero (Wilcoxon-test).
Testing the median rather than the mean or total number
of JSE across M trials makes NeuroXidence robust against
rare events and outliers. This provides, in contrast to the
UE method, a conservative hypothesis test in the case of
low rates and non-stationarity across trials.
In summary, NeuroXidence allows one to detect an

excess of precise temporal coordination of spiking activity
of multiple neurons on a time scale of a few milliseconds.
Since the estimation of the chance frequency considers the
complete auto-structure of each individual neuron and trial
as well as cross-structure slower than tr, it shows
robustness against features of neuronal data that were
discussed to induce false positives [2,5,8], such as any
firing-rate modulations of individual neurons and covaria-
tions of firing rates across neurons that are slower than tr,
possible regularity or burstiness, non-stationary rates
across trials, and low rates. Thus, NeuroXidence provides
a robust method to test the assembly hypothesis.
f spike coincidences based on NeuroXidence, Neurocomputing (2006),
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Fig. 1. Spiking activity of two simultaneously recorded single MI neurons in 36 trials (same data as shown in Figure 2 in [12]). Marker on the time-axis in

(A,B,C,E,F,G) correspond to the preparatory signal (PS) at 0ms, the first expected signal ES1 at 600ms, the second expected signal (ES2) at 900ms, the

third expected signal (ES3) at 1200ms, and the reaction signal (RS) at 1500ms. (A) Raster displays of spike discharges (top, neuron 2 (‘N2’) ; bottom,

neuron 3 (‘N3’)). (B) Spike rate for each neuron (computed by a sliding window of 100ms). (C) UE-based estimation of measured and expected

coincidence rates (sliding window of 100ms shifted by 5ms, 5ms coincidence width). (D) ISI histograms for N2 and N3. For N3, five intervals were larger

than 300ms and are not shown in the histogram. (E) Statistical significance for an excess coincidence rate based on the UE analysis (plotted as

log10½ð1� pÞ=p�, null hypothesis: independent Bernoulli processes). The larger the excess, the lower the p. (F) NeuroXidence-based estimation of the

statistical significance for an excess coincidence rate (null-hypothesis: fine-temporal cross-structure between N2 and N3 is slower than 15ms, log-scale).

(G) The same analysis as in F but coincidence width was 3ms instead of 5ms. (E,F,G) Whenever the significance value was smaller than the test level of

5%, the analysis window defines an epoch with significantly more coincidences than expected by chance.
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4. Results

We re-analyzed the data presented in [12] with both
methods discussed above (UE, [3,4] and NeuroXidence,
parameters: S ¼ 20, tc ¼ 5ms, tr ¼ 15ms). We used the
same parameters as those used in the original study (sliding
window of 100ms duration, shifted in 5ms offset along the
data, test level 5%, allowed coincidence width 5ms). To
describe the statistical properties of the recorded spike
trains, we computed also the Inter-Spike-Interval (‘ISI’)
distributions and the corresponding coefficient of varia-
tions (‘CV’) for periods with approximately stationary
firing rates of the neurons (Fig. 1A–D). The dot-displays as
well as the CV of 0.74 of neuron 2 indicate a more regular
firing than expected by a Bernoulli process. In a former
Please cite this article as: G. Pipa, et al., Validation of task-related excess o

doi:10.1016/j.neucom.2006.10.142
study, we found that, for moderate regularity in the spike
trains, the significance test that utilizes the Poisson
distribution may rather lead to a conservative significance
level in the case of the UE method [9]. Only extremely high
regularity may lead to false positives [3].
Since NeuroXidence fully accounts for the auto-struc-

ture in the data, we also applied that method to the very
same data evaluated by the UE method [12] and rigorously
compared the results. Fig. 1E,F compare the resulting p-
values of the two methods (log-scale). The exact p-values
resulting from the two methods show deviations, since
NeuroXidence tests for an excess of coincidences based on
a single-tailed test, while the UE method tests, by
definition, on both. However, both methods agree on
finding an excess of coincidences, specifically at the very
f spike coincidences based on NeuroXidence, Neurocomputing (2006),
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same instances in time, i.e. at times when the monkey
expected the go-signal to appear (at 0.9, 1.2, and 1.5 s).

Only during the period after RS do the results of both
methods disagree. While the UE method indicates a
significant excess, NeuroXidence indicates chance level.
The reason may be that neuron 2 changed its activity
locked to movement onset (not shown here), thereby
creating a latency variability across trials, when aligned to
signal occurrence (RS). Realignment of the trials to
movement onset corrects for that (see [4, Fig. 8]). Another
cause may be the extremely low firing rate at this time (Fig.
1A,B), a limitation for the UE method that is discussed in
[13]. NeuroXidence is unaffected by both influences. Thus,
the new analysis based on NeuroXidence validates the
results reported in [12]: significant increase of precise
coincident spikes beyond chance level is detected by both
methods at times when the monkey expected the go-signal
to appear at 0.9, 1.2, and 1.5 s.

To further investigate the time scale of the underlying
spike coordination, we shrank the coincidence width from
5 to 3ms (Fig. 1G, parameters: S ¼ 20, tc ¼ 3ms,
tr ¼ 9ms). As with the 5ms coincidence width, the
NeuroXidence analysis confirms an excess of coincidences
with a precision of 3ms at the same instances in time. We
conclude that the results shown in [12] indeed indicate an
excess of synchronized activity on a time scale between 3
and 5ms, rather than false positives.

5. Conclusion

Taken together, we conclude that the results shown in
[12] are not due to an effect of false positives. Indeed, our
results based on NeuroXidence [11] confirm excess
synchronized activity on a time scale of 3–5ms at 0.9,
1.2, and 1.5 s after PS, at moments in time at which the
monkey expected the occurrence of the GO signal.
NeuroXidence does not assume specific properties of
neuronal data and thus, is robust against features that
may lead to false positives when using other methods.
However, it is computationally more demanding e.g.
compared to the base version of the UE method [3,4].
Thus, the UE method is a fast and useful tool to screen and
analyze simultaneous spiking activity for the existence of
synchronized spiking activity. However, the NeuroXidence
UNC
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method may be a better selection for validation of the
results.
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