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Abstract— We present a novel viewpoint on the complexity of neural mechanisms, 
addressing some aspects of cortical processing, like memory, context modulation and 
coherence. Our simulation studies show how relatively small, recurrent microcircuits can 
interact with populations of neurons, achieving spontaneous memory / recall effects. Here, 
context modulation can play an important part in the conditioned recall. The emphasis is on 
the dynamical self-sustained activity of the recurrent microcircuit viewed as a "mental 
state" which can be interpreted by a target output population and controlled by external 
waves of activity (mainly external inhibitory waves). We also consider the problem of self-
organization and dynamical interaction between neuronal populations, which could have a 
key role in inference, memory and behavior. 
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1. Introduction 

 
An obvious aspect of information processing in the brain is the fact that every sensorial input is assimilated 

over an already existing internal "mental state" [1]. There is also evidence that most of the neural microcircuits 
are recurrent and that connectivity between cortical neurons is really high (on the order of 103 - 104) [2]. 
Moreover, it has been shown that highly irregular spike trains can be obtained with fixed random connectivity 
networks, questioning the source of the neural noise [3,4,5]. Within this context, we might attribute, at least 
partially, the apparently noisy, spontaneous neural activity to the "mental state" of a recurrent microcircuit (the 
so-called network effect). 

LETTER 
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It seems essential to analyze the neural activity of real neurons from a new computational perspective, 
which can reveal the dynamical nature of processing. Such an approach is really hard, since we deal with 
enormously large dynamical systems. Nonetheless, extensive research is already emerging, a good example 
being the work of Maass, Natschläger and Markram [6]. It has been emphasized that for large systems like 
neural microcircuits an exact link between the function of an individual neuron and its activity cannot always be 
found with traditional methods, its dynamics and interactions being far too complex for a comprehensive 
analysis. An alternative approach is to look at the activity of a population of neurons rather than to single units. 
This in turn, has its own limitations since one has to determine the target population (not always an easy task) 
and apply statistical analysis which might sometimes reveal irrelevant functional aspects. 

An emergent new technique of studying such large, complex, dynamical neural systems is to build and test 
large scale models, with biologically plausible components [7,8]. Using this technique, a novel approach to 
understanding the activity of high dimensional recurrent microcircuits has been used in the "liquid state 
machine" (LSM) [6] and "the echo state approach" [9]. In both cases, a population of readout neurons is trained 
(by linear regression for example) to observe the highly dynamic processing in a recurrent module and convert 
the unstable dynamics into stable, reliable output activity.  

Although, the recurrent microcircuit is highly biologically plausible, the existence of separate, independent 
readout populations [6] in the brain, that can be trained by regression methods, seems implausible. More likely, 
there is a continuum of microcircuits interconnected in a complex, evolution guided manner, where parts of a 
recurrent microcircuit are readout for other microcircuit modules and vice-versa. Plausible mechanisms like 
spike-timing dependent plasticity (STDP) could be the basis for the interoperability of different spatial modules 
of the continuous microcircuit sheet. Development could be guided by behavioral experience, by the interaction 
between the environment and the organism [10, 11, 12], in addition to genetic constraints. Dynamic associations 
might arise while the brain could self-wire itself in a complex way, perhaps too complex for a comprehensive 
analysis. Within this framework, we questioned the existence of a strong, unifying principle that guides cortical 
processing, called "The Coherence Principle" [13]. 

 
2. Coherence and Microcircuits 

 
Coherence is a universal yet simple principle, which states that a given interpretation is only "sound" in a 

given context. Thus, we can never separate the interpretation from the context. Also, an important observation is 
the fact that neural activity is most of the time causal, i.e. the activity of each neuron depends on the context of 
afferent activity. Moreover, we have to take into account the increasing complexity of neural activity, as one 
proceeds upstream in a sensorial processing hierarchy in the brain. While the primary layers seem to have 
deterministic responses, mainly driven by the input (as is the case in the primary visual cortex), deeper 
processing structures have a complex activity with complex firing patterns of the neurons. As one proceeds to 
higher levels of sensorial processing, the complexity of interactions between neural areas grows significantly. 
We could then separate the afferent populations of a cell into "input populations" and "context populations" 
(Figure 1). Clearly, this separation depends on the "interpretation" derived from the cell’s activity. There are 
many possible ways for segregating these two classes. A simple and maybe plausible segregation would be to 
label as input populations all the afferent neurons that are placed "before" the cell in the sensorial processing 
chain. Then, context populations would be all the other neurons that contribute to the activity of the target 
neuron. Lateral interaction and feedback neurons belong, in this case, to the context population. This definition 
can be extended from single neuron targets to target populations of neurons. 

The same input could trigger a whole different range of interpretations for different context activities. The 
activity of a cell or population that has important afferent activity, different from the input, cannot be assumed to 

Input population 

Context population

Activity = Interpretation of 
the input given the context 

Target neuron / population
Ascending fibers 

Figure 1. The “input” / “context” segregation from a neuron or population's perspective 
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be simply a function of the input. This is why a transfer function to characterize the activity in higher visual 
cortical areas, such as V4, based on the input stimulus, is very hard if not impossible to define. 

Microcircuit populations might cooperate to encode complex contexts and modulate other populations to 
generate interpretations. Competition, which has been extensively used by modelers, might not be a real 
plausible mechanism. Instead, we could have the following case: many populations cooperate, one being the 
observer and the others its input (simplified case). The observer population could learn to interpret only the input 
that is coherent with its current context, disregarding the other inputs. We could say that the relevant input wins 
the observer's attention, although no explicit competition takes place between the input populations (like lateral 
inhibition, etc). 

Populations of neurons can cooperate and influence each-other’s activity, having either a driving effect (if 
one population has a high impact on another one) or just a modulator effect (slightly changing the dynamics of 
the target population, without changing its overall response). In order to properly define coherence, we need to 
make a clear distinction between simple association / combination of activities and coherent cooperation. While 
in the case of simple association the target population is always influenced by the input to produce a given 
response, in the case of coherent activation the target population will only respond if its interactions with the 
context populations “allow it”. To be more precise, for the same input stimulation, the target population could 
either respond or not, depending on the activity of the context. When the target responds to the input given the 
context, then we say we have a “coherent interpretation of the input in the present context”. 

The principle of coherence is just a natural way of describing the dynamical activity of a complex system 
like the brain, composed of many subsystems that cooperate and interact. While it does not introduce radically 
novel concepts, it provides the framework for a new way of approaching brain / large-scale model research. The 
coherence principle predicts that a target subsystem (like a micro-column or microcircuit) couples to other 
subsystems in a non-trivial way, and that this coupling is mainly dependent on the dynamical state of the 
subsystem and of its associated context subsystems. For such a system to be flexible and generic enough, it 
seems plausible that the target subsystem has to be able to engage in different “trajectories” in time (by trajectory 
we mean dynamical evolution in time), depending on the interactions with the context. Taking the same 
subsystem, it would be of great importance that one and the same neural architecture should be able to exhibit a 
very large set of dynamical behaviors, as independent from the underlying architecture as possible with no trivial 
attractors or preferred states. It has been suggested that such systems could be formalized in terms of “far-from 
equilibrium computing devices” [14]. Put in a different way, the same neural subsystem would be able to “run 
different neural programs” at different times. In the case of the brain, the canonical micro-columns also called 
microcircuits could represent such subsystems. 

From a different perspective, if information could be encoded in the trajectory in time of the subsystems, 
then it seems also plausible that the subsystems should be able to get engaged on corresponding trajectories by 
incomplete, partial information. This is essential if the system has to deal with an inaccessible environment (as is 
the case with the brains and the natural environment). Then, the subsystems cannot be “at the mercy of the input” 
drive from the stimuli, but must be able to predict, i.e. be independent from the input drive and reproduce as well 
as possible the trajectory associated with the partial stimulation. Such subsystems must then exhibit self-
sustained activity, with trajectories merely initiated/constrained by the input. We might think of this in terms of 
predictive coding [15] but this time from a dynamical perspective. 

The same stimulation of a subsystem at different times can lead to completely different responses, 
depending on the recent history and the instantaneous contexts influencing the subsystem. However, the most 
important aspect here is that such a subsystem can be rendered non-responsive to an input (non-coherent) if the 
context interactions bring it to a “dynamical refractory” state. If the subsystem is self-sustained (doesn’t need 
external energy to be active) and in addition it has no preferred states / attractors, then in principle it should be 
possible for a “context” to “modulate” the subsystem’s trajectory such that an observer population can recover 
the dynamical properties of the “neural program” running on the microcircuit at any given point in time. In this 
respect, the microcircuit is meta-stable in terms of dynamics, depending on the associated context modulation. 

In this paper, we investigate a scenario of a self-sustained microcircuit stimulated by an input and 
“modulated” by a context. We show that an output population of neurons having synapses with spike-timing 
dependent plasticity can be used in principle to recover context sensitive trajectories of the microcircuit. 

 
3. A Microcircuit "at work" 

 
Studying neural microcircuits with rich dynamics, close to their biological counterparts, requires 

computationally effective models. One such neural model, developed by Izhikevich [16], has a very efficient 
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implementation and it is, at the same time, very rich in dynamics. At the synaptic level, Senn and Markram have 
developed a biologically plausible algorithm for modifying the neurotransmitter release probability in a spike-
timing dependent way [17]. 

Based on such plausible building-blocks, we have constructed a simulated neural architecture that consists 
of 4 distinct populations of neurons (Figure 2). 

 

 
Figure 2. The architecture of the test model. An input population of 10 neurons randomly projects to layer 3 of a 
4-layered neural microcircuit (10 neurons in each layer). An output and a context population, both consisting of 
10 neurons, are connected with all neurons in the microcircuit (all layers). The context population sends axons to 
the microcircuit, while the output population receives input from all the neurons of the microcircuit. 

 
Neurons. We used 3 different types of neurons, distributed differently, depending on the population (see 
“Architecture” below). The neural dynamics are modeled with a system of two coupled differential equations as 
described by Izhikevich, having parameters (a, b, c, d) that allow for the modeling of neurons with different 
properties (such as “regular spiking”, “resonator”, “chattering”, etc) [16]. We have used “regular spiking” 
neurons for the input, output and context population neurons (see ref. [16], parameters: a = 0.02, b =0.2, c = -70, 
d=8). For the other population (the recurrent microcircuit), two additional neuron types are used: “resonator” 
and “chattering” neurons (see ref. [16], parameters for “resonator” neurons: a = 0.1, b =0.26, c = -70, d=8; 
parameters for “chattering” neurons: a = 0.02, b =0.2, c = -50, d=2). 
 
Synapses. The synapses are modeled by specifically defining the dynamics of a synaptic conductance, gsyn. They 
are dynamic in the sense that the postsynaptic current (PSC) is delivered using the following set of equations: 

))1(()1()( −−⋅−⋅⋅= tUEtgWAtPSC postsynsynsynsyn                                 (1) 

synetgtg synsyn
τ/1)1()( −⋅−=     (2) 

1)1()()( +−= tgtgthenspikecpresynaptiif synsyn                                (3) 

where, Asyn is the absolute maximal synaptic strength, Wsyn is the synaptic efficacy (between 0..1), gsyn is the time 
dependent synaptic conductance, Esyn is the reversal potential for the synapse type (-90 mV for inhibitory and 0 
mV for excitatory synapses), Upost is the membrane potential of the postsynaptic neuron. Each time a presynaptic 
spike occurs, the value of gsyn is incremented by 1, allowing for the superposition of presynaptic stimulation 
effects. 

Using this basic synaptic model, it is possible to represent both “fixed” and “plastic” synapses. In the case 
of fixed synapses, the value of the synaptic efficacy Wsyn (which represents the presynaptic release probability) is 
not changing during the simulation. These synapses are instantiated with a fixed value for Wsyn when the 
simulation is started. For the other case, of plastic synapses, the synaptic efficacy changes dynamically during 
the simulation, according to some rule. Synapses featuring spike-timing dependent plasticity (STDP) have an 
underlying algorithm for changing Wsyn as a function of the pre- and postsynaptic spike timing. In the present 
study, we used the algorithm described by Senn and Markram [17]. 

Input 
population Recurrent microcircuit

Teacher signal 

Output 
population 

Context 
population

1 2 3 4
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Architecture. The first population, also called input, consists of a single sheet of 10 neurons that receive external 
current drive, injected by the experimenter. The neurons are modeled as “regular spiking” neurons (see ref. [16], 
parameters: a = 0.02, b =0.2, c = -70, d=8). Each neuron sends projecting axons to neurons in the next 
population, namely to the third layer of the neural microcircuit (see Figure 2). Unlike the case of Dale’s law, the 
neurons modeled here are allowed to make both inhibitory and excitatory connections with postsynaptic targets. 
On average, each input neuron has roughly 5 synaptic contacts to postsynaptic neurons in the microcircuit. The 
projections are random, in the sense that the postsynaptic target is chosen randomly with a uniform probability of 
5%. From these synapses, 20% are inhibitory and 80% excitatory. Their parameters are as follows: Asyn = 0.05, 
τsyn = 15 ms, Esyn = -90 mV for inhibitory synapses, and Asyn = 0.02, τsyn = 25 ms, Esyn = 0 mV for excitatory 
synapses. The synaptic efficacies are fixed (synapses are not plastic) to a value Wsyn = 0.7. 

The input population projects onto the third layer of a four-layered recurrent microcircuit with random 
connectivity (Figure 2). Each layer contains 10 neurons, with of a mix of 80% resonating (a = 0.1, b =0.26, c = -
70, d=8) and 20% “chattering” (a = 0.02, b =0.2, c = -50, d=2) neurons [16], randomly distributed across layers 
(uniform distribution). This combination renders the microcircuit self-sustained even in the absence of external 
input. Self-sustained activity is possible because of the resonating properties of neurons (80% are of resonating 
type) which have low frequencies of resonance in the range of 5-30 Hz. The energy stored in the activity of the 
system gets amplified by the excitatory synapses, while the system avoids saturation because of the reluctance of 
neurons to high firing frequencies. 

Within the microcircuit, the synapses randomly project between neurons but still, retinotopy is maintained 
to some degree. A synapse from a neuron at a given location usually projects to a neuron in a different layer but 
in a local neighborhood. Projections between layers are feed-forward (from low index to high index: eg. 1-2, 1-3, 
etc) as well as feed-back (from high index to low index: eg. 4-3, 4-2, 3-2, etc). Also, lateral interconnections 
between neurons in the same layer exist. Connectivity is mainly inspired from the rules of connectivity 
determined for the visual system [18]. The synapses are fixed and have the same parameters as described for 
input-to-microcircuit ones, except the fact that the synaptic efficacies are random: Wsyn ∈ (0..1). 

The output population, consisting of 10 “regular spiking” neurons, is connected through synapses featuring 
STDP to every neuron in the recurrent microcircuit. We used for STDP the algorithm of Senn and Markram [17] 
which modifies the synaptic efficacy Wsyn as a function of the relative timing between pre- and postsynaptic 
spikes. If the presynaptic spike occurs before the postsynaptic spike, in a given time window (50 ms), the 
synapse is potentiated, otherwise it is depressed. The amount of potentiation and depression depends on the 
difference between pre- and postsynaptic spiking times [17]. STDP synapses in our model have the following 
parameters: Asyn = 0.05, τsyn = 20 ms, Esyn = 0 mV. The synaptic efficacy Wsyn is modified according to the 
aforementioned STDP algorithm and it is low bounded to a limit value of 0.05 (the release probability cannot 
drop to 0). 

Also, there are a number of synapses with the input population that are activated only during the so-called 
"self-training" (when an external stimulus is applied to the input). Each neuron in the output population is 
connected with exactly one neuron in the input population, in an ordered fashion. Synapses are fixed, with 
parameters: Asyn = 0.05, τsyn = 25 ms, Esyn = 0 mV, Wsyn = 0.5. Hence, the input is injected also into the output 
population neurons such as to provide a teacher signal. Such a signal is necessary since we want the output 
population to associate the activity of the microcircuit with the pattern that is presented as input during 
stimulation. In other words, the output population has to learn (through self-organization) to produce consistent 
activity patterns in response to the complex, self-sustained dynamics of the microcircuit. These activity patterns 
are constrained in our experiment to resemble the patterns provided as input during stimulation. However, this is 
only a simplifying design that aims at reducing the complexity of output patterns. In a more general case, the 
teacher signal might come from other microcircuits that have their own dynamics. For the sake of simplicity 
however, we provide an explicit teacher signal (the input in this case). Alternatively, the output population might 
as well be part of another dynamic microcircuit or the same microcircuit (this is a clearly problematic separation). 

An additional population, that in a more general framework should be another microcircuit, is provided in 
order to inject a wave of spikes into the microcircuit. This population is called "the context population" and 
consists of 10 “regular spiking” neurons. The context population is controlled by injecting external currents 
during the experimental procedure. Neurons in the context population are connected via weak inhibitory 
synapses to all the neurons in the microcircuit population, with fixed synaptic efficacies, Wsyn = 1. Their 
parameters are: Asyn = 0.02, τsyn = 25 ms, Esyn = -90 mV. 

3.1. The dynamics of the model 
The membrane oscillations of the “resonator” neurons, the “chattering” neurons and the highly recurrent 

synaptic connections, endow the microcircuit with a self-sustained activity, even in the absence of input (Figure 
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3). We call the activity of the microcircuit at any given time, the microcircuit's "mental state". Any spikes from 
the input or context population generate a perturbation of the microcircuit's “mental state”. 

 
 

 
 

Figure 3. Self-sustained, spontaneous activity of the microcircuit in the absence of input. Time is represented on 
the “x” axis while each band on the “y” axis represents one layer of 10 neurons from the populations indicated 
on the plot. Each dot represents a spike of the corresponding neuron. The length of the trace is 500 ms.  

 
An important observation is that the processing performed by the microcircuit is continuous. Between two 

input stimulations, the microcircuit has a sustained, continuous "mental activity". Unlike traditional neural 
network models, where the input or the background currents drive the activity (which does not exist in the 
absence of the input), the use of recurrent microcircuits opens a new, more plausible approach to neural 
processing. There is no external energy injected into the system while it is self-sustained. 

Surprisingly, the spike trains generated by the recurrent microcircuit are highly irregular, resembling a 
spontaneous random activity (although, no random currents are injected, like in other models). 

3.2. Experimental setup 
Even for this relatively small system, with only 60 neurons, a clear and robust analysis method is hard to 

define. Using rate analysis on the neurons inside the microcircuit is impractical and should be avoided since we 
are interested in the millisecond dynamics and each individual spiking. An empirical observation during 
experiments was that although the rate of a neuron did not significantly change, for very weak inputs, the activity 
patterns of the output population dramatically change. 

 

 
 

Figure 4. The two types of input signals used in the experiments. A. "Convex" rate profile; B. "Concave" rate 
profile. Each neuron fires a regular spike train with a firing rate corresponding to the value indicated in the plot. 
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Figure 5. Example of “convex” phase coded pattern in the output population (top), after shutting down the inputs. 
The plot has the same elements as in Figure 3, but the activity is recorded at a different moment in time. 

 
 

During experiments, a frequency-modulated signal is injected into the input layer. We used two types of 
signals: a “convex” signal and a “concave” signal (see Figure. 4), encoded in firing rates. 

After presenting each input to the system, the activity pattern in the output population is analyzed. We 
empirically observed a consistent (and probably expected) transformation of the input rates into output phase 
coded responses. Consistent “convex” and “concave” activity profiles, encoded in the relative firing phase of 
neurons, emerge in the output population as a result of the “convex” and “concave” input rates, respectively. The 
phase coded response can be observed in Figure 5. 

Rate analysis reveals no frequency-coded responses in the output population, not even during the 
stimulation period. The phase-coded responses appear only after shutting down the input. This suggests that the 
output population learns (through its STDP synapses) to interpret the microcircuit's spontaneous activity in a 
certain way (“convex” or “concave”). In other words the dynamical evolution of the microcircuit is mapped onto 
consistent patterns of output activity, coded as phase-patterns. 

As a measure of “convexity” of the output responses, we used the following formula: 
1. in 500 ms bins, a “convexity” measure (CM) is computed (for each “convex” event 20 was added to 

the “convexity” measure, for each “concave” event, 20 was substracted from CM); 
2. an event was only validated if all the output neurons fired in a window of 20 ms length; if the relative 

phases of the firings respected an approximated “convex” profile, the event was considered to be 
“convex”; similarly, if the profile was approximated as “concave”, a “concave” event was recorded. 

 
During the first experiment, a “convex” input has been presented for about 40 seconds. The same 

experiment has been repeated also with a “concave” input. After presenting the rate patterns, the input is shut 
down and the output population is recorded (during this time the system receives no external stimulation). 

Results, presented in Figure 6, clearly show that the output population interprets the reverberating activity 
(after stimulus shutdown) in a consistent way, suggesting that the “convexity” measure is relevant in analysis. 
Moreover, the high irregularity of recall events emphasizes the complexity of the neural activity and the richness 
of its dynamics (we should bear in mind that no random background currents are included into the model). 

More intriguing results are obtained if the system is presented with both “convex” and “concave” inputs in 
two successive training epochs during the same experiment. The behavior of the system is in this case highly 
unpredictable. Alternating, episodic recalls of “convex” or “concave” events occur with high irregularity (or it 
might be that the analysis method fails to reveal some regularity). If the second training epoch is prolonged, the 
system's recall will become deterministic, favoring the last stimulus. We should mention that in the absence of 
any past input (training epochs), the system behaves randomly but eventually settles to a 0 “convexity” recall 
after a few seconds of activity (no preference for any output patterns). 
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Figure 6. “Convexity” measure for the “convex” task (A) and “concave” task (B). Recall events are highly 
irregular in time, but consistent (always, with few exceptions due to the measuring method, convex or concave). 

 
Finally, the most important experiment tries to reveal some possible mechanisms of context modulation 

and conditioning. First, the context population is activated (firing oscillating random spike trains in the gamma 
band, with a mean frequency of 30-50 Hz) during the “convex” training epoch. Then, it is shut down. After this 
step, the system is allowed to freely evolve for 50 seconds. A “concave” training epoch follows for 60 seconds. 
After the two training epochs, the inputs are shut down and the activity of the output population is observed. 

In the beginning, the recall is mainly biased towards the last type of stimulus presented during the training 
epochs (“concave”). When the context population is activated, the associated stimulus is “recalled” (the “convex 
stimulus”). It seems that the STDP synapses are able to map two different trajectories of the microcircuit onto 
two different, even complimentary, firing patterns of the output. The microcircuit’s trajectory is influenced by 
the “context” oscillations and this small modulation, although weak, can be recovered by the output neurons 
(Figure 7). 

The implications of these findings are important since they show that a simple population of neurons is 
able to store and preferentially retrieve dynamic information presented in the past by using an association 
context. Synapses with biologically plausible models can self-organize to map different trajectories of a large 
system onto reliable consistent dynamics of another subsystem / population of neurons. 

 
 

 
 
Figure 7. The system's behavior during the context experiment. A. The “convexity” measure of the output 
activity. B. The activation state of the "context population". Conditioned recall of “convex” patterns can be 
observed when the context population is “on”. The plot monitors the “convexity” measure immediately after the 
end of training. 



Neural Information Processing - Letters and Reviews                                                                  Vol.7, No.2, May 2005 

 27

4. Conclusions 
 

We have shown that even for the case of a relatively small neural microcircuit, the activity patterns that are 
produced are highly complex and dynamic. First of all, in our models we tried to produce a more plausible 
framework in which to study such systems. Therefore, we created a self-sustained microcircuit with ongoing 
dynamics and estimated how its trajectories can be characterized by a small set of readout neurons that self-
organize their synaptic weights in order to capture some relevant associations. It is shown here that self-sustained 
activity can be mediated by the resonance properties of neurons, which allow for the stabilizing of the system. 
Because of the persistent activity of the circuit, the input stimulation represents a perturbation rather then a 
driving force. Moreover, the patterns of activity produced in the microcircuit, even in the absence of any external 
stimulation and any background noise, are irregular. This suggests that the highly complex dynamics of real 
neural systems should not be simply assumed to be noisy, but we should assess the degree to which they are 
subject to real noise. 

Concerning the readout population analysis, some aspects need to be pointed out. Unlike other studies [7], 
we do not assume a readout that is explicitly trained, but rather use the information extracted collectively by a 
reduced set of neurons (phase patterns of 10 neurons in our case). We suggest that the activity of the 10 output 
neurons is a reduced characterization of the microcircuit’s dynamics. Moreover, it is possible that the phase 
patterns produced by these neurons are able to recover fine temporal structure in the activity of the microcircuit, 
since we have not observed any robust rate changes in the circuit during the self-sustained, ongoing activity. 
Empirical observations led us to the conclusion that the resonating neurons studied here are preventing rate 
modulations because of their reluctance to high firing frequencies. 

Finally, our results suggest that STDP is a versatile mechanism that can contribute to complex dynamical 
association processes. The plasticity rule, not only produces LTP and LTD, but it rather contributes to a 
dynamical extraction of relevant information from high dimensional transient states. This extraction can be 
modulated by subtle changes in the global state of a microcircuit, in our case induced by the activation of context 
inhibitory oscillations. We conclude that such interactions might form the basis for coherent and cooperative 
dynamics of large neural systems that finally give rise to memory, conditioning and maybe behavior. 
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