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Abstract

We investigate how different forms of plasticity shape the dynamics and computational properties of simple recurrent spiking neural networks.
In particular, we study the effect of combining two forms of neuronal plasticity: spike timing dependent plasticity (STDP), which changes the
synaptic strength, and intrinsic plasticity (IP), which changes the excitability of individual neurons to maintain homeostasis of their activity. We
find that the interaction of these forms of plasticity gives rise to interesting network dynamics characterized by a comparatively large number of
stable limit cycles. We study the response of such networks to external input and find that they exhibit a fading memory of recent inputs. We then
demonstrate that the combination of STDP and IP shapes the network structure and dynamics in ways that allow the discovery of patterns in input
time series and lead to good performance in time series prediction. Our results underscore the importance of studying the interaction of different
forms of plasticity on network behavior.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The mammalian neocortex has been described as a device
that mostly talks to itself (Braitenberg & Schüz, 1991).
Understanding how patterns of neural activity in the highly
recurrent cortical architecture encode information and how the
activity dynamics give rise to purposeful computation is a
central goal of neuroscience (e.g., Abeles (1991), Douglas and
Martin (1991), Rieke, Bialek, Warland, and Van Steveninck
(1999), Singer (1999), Skarda and Freeman (1987)).

In order to approach this question it is helpful to study
simplified computational models of neural circuits. Such
models can shed light on questions like: What kinds of (model)
neuron properties and connectivity patterns give rise to what
kinds of dynamics in recurrent networks (e.g., Blum and Wang
(1992), Hopfield (1982), Pasemann (1995), van Vreeswijk and
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Sompolinsky (1996))? Or, what kinds of dynamics support
what kinds of computational properties (e.g., Legenstein and
Maass (in press), Vogels, Rajan, and Abbott (2005))? Or, what
kinds of structure and dynamics are required to implement
specific computational functions such as maximum likelihood
estimation or Bayesian inference (e.g., Deneve, Latham, and
Pouget (1999), Rao (2004))?

In recent years, a number of approaches for online
processing of time-varying inputs have been proposed that
utilize the complex dynamics inherent in some recurrent
networks architectures. Among the most prominent examples
of such architectures are echo state networks (Jäeger &
Haas, 2004) and liquid state machines (Maass, Natschläger, &
Markram, 2002). In the following, we will refer to all such
approaches as dynamic reservoir networks (DRNs). In DRNs,
the reservoir is a fixed, randomly structured recurrent network
that receives time-varying input on which certain computations
are to be performed. The reservoir fulfills two functions. First,
it nonlinearly transforms input streams into high-dimensional
activation patterns. Second, it exhibits a fading memory of
recent inputs. These properties are exploited by a simple linear
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read-out mechanism that can be trained to perform interesting
online computations on input time series. To this end, the
linear read-out is often trained with standard linear regression
techniques. The performance of such networks depends on the
character of the dynamics in its reservoir. Interestingly, it has
been noted that such networks may function particularly well if
they operate at the edge of chaos (Bertschinger & Natschläger,
2004).

The structure of the recurrent network forming the reservoir
in DRNs is typically random and remains fixed — only the
weights of the read-out neurons are trained. In sharp contrast
to this, the structure and dynamics of cortical networks are
constantly shaped by a large variety of different plasticity
mechanisms at the synaptic and cellular levels in a systematic
and reproducible fashion. Arguably, a comprehensive theory
of cortical information coding and processing must take into
account how all these different plasticity forms contribute to
shaping the structure and dynamics of cortical networks (Hebb,
1949). In the last years, substantial progress has been made in
characterizing different forms of plasticity at the biophysical
and computational level. However, there is still a substantial
gap in our understanding of how these different forms of
plasticity interact to shape cortical structure and dynamics from
the microcircuit to the system level, and what computational
properties arise in the process.

In this study we ask: How can different forms of plasticity
shape structure, dynamics, and computational properties of
recurrent spiking networks? To address this question it
is necessary to study simplified model systems for which
understanding the influence of each aspect of the model
on its behavior is tractable. For this reason we choose a
highly simplified neural network architecture that allows us to
investigate the network structure and dynamics in a detailed
fashion and enables us to disentangle the influence of different
plasticity forms on the overall network behavior. In this paper
we explore this issue for two forms of neuronal plasticity,
spike timing dependent plasticity (STDP), which changes the
synaptic strength in a temporally asymmetric “causal” fashion
(Bi & Poo, 1998; Dan & Poo, 2004; Izhikevich, Gally, &
Edelman, 2004; Legenstein, Naeger, & Maass, 2005; Markram,
Lübke, Frotscher, & Sakmann, 1997; Sjostrom, Turrigiano, &
Nelson, 2001; Song & Abbott, 2001; Song, Miller, & Abbott,
2000; Suri, 2004), and homeostatic intrinsic plasticity (IP),
which adapts the excitability of individual neurons to keep
their average activity in a desired regime (Daoudal & Debanne,
2003; Desai, Rutherford, & Turrigiano, 1999; van Welie, van
Hooft, & Wadman, 2004; Zhang & Linden, 2003). First, we
characterize and compare the structure and dynamics of simple
spiking neural networks that have been shaped by different
combinations of these plasticity mechanisms. In this context we
study stability properties emerging through plasticity. Second,
we investigate to what extent input-driven recurrent networks
that have been shaped by different forms of plasticity exhibit
fading memory of recent inputs. Finally, we study how the
different forms of plasticity may allow networks to capture
regularities in input time series in their connectivity structure
and how they can support the prediction of future inputs.
2. Network description

We consider a simple recurrent network model of a cortical
microcircuit with N binary units. The firing activity of the
network at the discrete time t ∈ N is described by the activity
vector x(t) ∈ {0, 1}

N , where xi = 1 means that unit i is
active (spiking) and xi = 0 means that the unit is inactive
(not spiking). Units are connected through weighted synaptic
connections W, where Wi j is the connection from unit j to
unit i . All connections are excitatory (Wi j ≥ 0 ∀i, j) and self-
connections are prohibited (Wi i = 0 ∀i). We define the pre-
activation hi of unit i at time t + 1 as:

hi (t + 1) =

(
N∑

j=1

Wi j (t)x j (t)

)
− Ti (t), (1)

where Ti (t) is the threshold of unit i at time t . The network
activity x(t + 1) is defined as:

x(t + 1) = kWTA (h(t + 1)) , (2)

where h(t + 1) is the vector of pre-activations, and kWTA
is the k-winner-take-all function that selects the k units with
the highest pre-activations and sets their activity to 1, while
setting the activity of all other units to 0. In the case of ties
(hi (t) = h j (t)), units with higher indices are preferred. Note
that such ties are extremely unlikely to occur and we have never
observed them in our experiments.

Roughly 20% of the neurons in the cortex are inhibitory
interneurons (Gabbott & Somogyi, 1986) which keep the
activity resulting from the excitatory connections among
pyramidal neurons under control. Since this is a critical process
a model of the cortex should include a form of inhibition. The
kWTA mechanism is a simple but effective way of modeling
the effect of a network of inhibitory interneurons that maintains
a constant level of firing in the network (O’Reilly, 2001). With
this method there will be exactly k active units at each time
step. Typically we choose k � N . This ensures population
sparseness, i.e., only a small fraction of units in the network
are active at any time.

The kWTA mechanism enforces competition among the
units, at the same time allowing for distributed representations.
Fukai and Tanaka (1997) showed that the kWTA mechanism
can be implemented with biologically plausible lateral
inhibition mechanisms. It has also been shown that a simple
form of kWTA is useful for modeling a wide range of cognitive
phenomena (O’Reilly & Munakata, 2000) and that winner-
take-all and k-winner-take-all networks exhibit interesting
computational properties (Maass, 2000).

The structure of the network, the weights Wi j and the
thresholds Ti , are shaped by spike timing dependent plasticity
(STDP) and intrinsic plasticity (IP), respectively. We use a
simple model of STDP that strengthens the synaptic weight Wi j
from unit j to i by a fixed amount ηSTDP whenever unit i is
active in the time step following activation of unit j . At the
same time, the reciprocal connection W j i is weakened by the
same amount:

∆Wi j (t) = ηSTDP
(
xi (t)x j (t − 1) − x j (t)xi (t − 1)

)
. (3)



314 A. Lazar et al. / Neural Networks 20 (2007) 312–322
Weights are constrained to the interval [0, 1] by clipping them
if they would fall below 0 or grow beyond 1. Formally, we write
Wi j (t + 1) = Φ(Wi j (t) + ∆Wi j (t)), where:

Φ(y) =

0 : y < 0
y : 0 ≤ y ≤ 1
1 : 1 < y.

(4)

Note that due to the anti-symmetric updates of Wi j and W j i
the sum of all weights in the network usually remains constant
unless individual weights saturate at zero or one, which can
violate weight conservation.

We incorporate a simple model of IP that individually adjusts
the thresholds Ti of each unit in a homeostatic manner. A unit
that has just been active increases its threshold while an inactive
unit lowers its threshold by a small amount:

Ti (t + 1) = Ti (t) + ηIP (xi (t) − k/N ) , (5)

where ηIP is a small learning rate. This rule facilitates life-
time sparseness, i.e., it drives each unit to be active on average
k out of N times. In particular, it encourages every unit to
participate in the network dynamics on a regular basis. This
mechanism is complementary to the kWTA mechanism that
ensures population sparseness.

For fixed weights Wi j and thresholds Ti the network is a
deterministic discrete time dynamical system. The system state
is given by the vector of unit activities at time t , x(t), which
completely determines the state x(t + 1) in the next time step.
Due to the kWTA function, the system state is limited to the set
of N !/(k!(N − k)!) states corresponding to selecting k out of
the N units to be active. For sparse networks with k � N this
number is much smaller than the total number of 2N states that
a general binary network of size N can assume. But for typical
values we will consider in the following it can still be very high.
For example, a small network with N = 100 and k = 12 can
already visit ∼1015 states.

Since the number of allowed states is finite, a network
with fixed weights and thresholds has to eventually re-visit
a previously encountered state. Thus, when initialized in an
arbitrary initial state, the network state will evolve until, after
a transient period, it will enter a limit cycle or a fixed point.

3. Effect of different combinations of STDP and IP on
network structure and dynamics

In order to study the effect of STDP and IP, we simulate
networks with different combinations of these plasticity
mechanisms and analyze their structure and dynamics.
Networks are initialized with sparse random connectivity
(10%), but all weights are allowed to grow or shrink
subsequently. The weights present initially are drawn from a
uniform distribution over [0, 0.1]. Thresholds Ti are drawn from
a Gaussian distribution with mean zero and standard deviation
0.1. Each simulation proceeds in two phases. During the
plasticity phase, we simulate the network for 100,000 time steps
while different combinations of STDP and IP are operating. In
the subsequent analysis phase we switch off all plasticity so
Fig. 1. Aspects of the structure of networks trained with different combinations
of plasticity mechanisms. The upper row shows weight histograms for example
networks in the STDP + IP and STDP conditions. The lower row shows
scatter plots of units’ thresholds versus the sum of their afferent weights for
the STDP + IP and IP conditions.

that the weights and thresholds of the network remain constant
and observe the network’s autonomous dynamics.

We consider four kinds of networks corresponding to all
combinations of switching STDP and IP on and off. Depending
on which plasticity form is present, we denote these four
conditions as STDP + IP, STDP, IP, and no plasticity. In order
to ascertain that differences in the behavior of networks trained
with different combinations of plasticity mechanisms are not
merely due to different statistics of weight strengths we use
the following training scheme to ensure that the distribution of
weight strengths is similar across conditions that did or did not
use STDP:

• STDP + IP: The network is trained with both types of
plasticity as described above.

• STDP: The network is trained only with STDP; thresholds
are kept at their small random initial values.

• IP: We initially train the network as in case STDP + IP and
subsequently shuffle the weights. This destroys any structure
in the weight matrix but leaves the distribution of weight
strengths identical. We then retrain the network with only IP
being present for an additional 100,000 time steps.

• no plasticity: We train the network as in the STDP case and
subsequently shuffle the weights.

3.1. Emergent network structure

The different plasticity mechanisms structure the networks
in different ways, as illustrated in Fig. 1. The upper left
panel shows a typical weight histogram after 100,000 steps
for a network in the STDP + IP condition. The weights have
assumed an essentially bimodal distribution with most weights
saturated close to either zero or one. Only a small number of
weights have intermediate strengths. This behavior is frequently
observed in recurrent networks with an STDP mechanism
(Song et al., 2000) but it depends on the particular kind of STDP
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Fig. 2. Stability of weight patterns during the plasticity phase for networks
with N = 100 and k = 4 (left) or k = 12 (right). The average Hamming
distance of the thresholded weight matrix from its final value H(t) is plotted as
a function of training time. The shaded areas correspond to confidence intervals
given by one standard deviation. For STDP networks, weights quickly settle to
their final form. In the STDP + IP condition weights keep changing during the
entire simulation.

rule (Gütig, Aharonov, Rotter, & Sompolinsky, 2003). The
upper right panel of Fig. 1 shows the weight distribution for a
network in the STDP condition. A similar bimodal distribution
can be observed. However, fewer weights tend to saturate at one
and there are no weights with medium values. The presence of
STDP in both cases drives a subset of the weights to become
very strong while the majority of weights remain close to zero.

The IP mechanism adjusts the units’ thresholds to ensure
homeostasis of their activity. Units receiving high levels of
input driving them to be active very frequently will tend to
raise their thresholds, while units receiving too little activation
will lower their thresholds. Due to this, the thresholds become
correlated with the strengths of the afferent connections to
a neuron. This is illustrated in the lower part of Fig. 1 for
example networks from the IP and STDP + IP conditions. It
shows scatter plots of thresholds versus the sum of all weights
projecting to a unit. In the IP case (lower right), the correlation
is very high with a correlation coefficient of 0.98. In the
STDP + IP case (lower left) the correlation is lower, with a
correlation coefficient of 0.40.

In order to see to what extent the pattern of weights stabilizes
during the learning process, we consider the change in the
weight matrix over time. To this end we first threshold all the
weights according to:

Vi j =

{
0 : Wi j < 0.5
1 : Wi j ≥ 0.5.

(6)

We then consider the normalized Hamming distance of the
binarized weight matrix at time t during training from the final
thresholded weight matrix at the end of training:

H(t) =
1

N 2

N∑
i=1

N∑
j=1

∣∣Vi, j (tfinal) − Vi, j (t)
∣∣ . (7)

In Fig. 2 we plot this Hamming distance as a function of time
for networks in the STDP and STDP + IP conditions for two
values of k. After around ∼104 time steps the weights have
Fig. 3. Examples of activity patterns during a 200 time step period of the
analysis phase in networks (N = 100, k = 12) shaped by different
combinations of plasticity mechanisms. The presence of a spike (xi (t) = 1)
is represented by a black dot. Networks with STDP (left) tend to exhibit shorter
limit cycles than their counterparts without STDP (right). Networks with IP
(upper row) tend to involve more units in their activity patterns than their
counterparts without IP (lower row).

settled in the STDP condition. In the STDP + IP condition,
the weights keep changing until the end of the plasticity phase.

3.2. Emergent network dynamics

To study the dynamics of networks that have been shaped
by different combinations of plasticity mechanisms, we freeze
the network structure (weights and thresholds) at the end of the
plasticity phase and observe the networks’ autonomous activity
(analysis phase). Fig. 3 shows typical records of network
activity during the analysis phase for example networks from
the four conditions with N = 100 and k = 12. The network
trained only with IP is settling into a very long limit cycle, in
which all units of the network participate. The other networks
enter into comparatively short limit cycles. Note that in the
cases without IP (bottom panels) fewer units tend to participate
in the dynamics while in the presence of IP more units become
engaged (top panels). This behavior is a general trend that is
caused by the homeostatic nature of the IP mechanism that tries
to establish a finite mean activity of k/N for every unit in the
network during its plasticity phase. The activity patterns at the
end of the plasticity phase (not shown) are very similar to those
observed during the analysis phase displayed in the figure. This
implies that the measured effects are not simply an artifact of
switching off plasticity but reflect the network structure that was
learned during the plasticity phase.

In order to characterize and quantify the dynamics of
networks with different combinations of plasticity more
systematically, we analyze the structure of their state space
with respect to the quantity, size, and stability of limit cycles.
To this end, we simulate the networks from random initial
configurations for long periods of time while keeping a record
of all visited states. Reaching of a limit cycle is indicated
by a re-occurrence of a previously visited state, and the time
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Fig. 4. A: Length of limit cycles in the analysis phase in networks with N = 100 and varying k shaped by different combinations of plasticity rules. Each data
point represents an average over 50 networks. Error bars indicate standard error of the mean. B: Average number of distinct limit cycles that were reached from
200 random initial states of a network. Again, results are averaged over 50 experiments with error bars indicating standard error of the mean. C: Average length of
transients before a limit cycle is reached when the network is initialized in random initial states.
2 This measure is inspired by the Lyapunov exponent for continuous systems.
Since in our case d(t+1) can become zero due to the discreteness of our system,
a normal Lyapunov exponent cannot be defined.
difference between these visits indicates the length of the limit
cycle.

We start each trained network in 200 random initial states
and simulated it for 50,000 to 400,000 steps. We recorded the
length of the transient period needed to reach a limit cycle,
the period of the limit cycle itself, and how many of the 200
random initial conditions led to distinct limit cycles. The results
of this analysis for networks of different values of k are shown
in Fig. 4. The left panel shows the average length of limit cycles
for different values of the sparseness parameter k. Networks
trained only with IP exhibit limit cycles that are on average
much longer than those of any other networks. The average
length of limit cycles tends to grow exponentially with k.
Networks with STDP do not exhibit this trend. The length of
their limit cycles remains small even for bigger k. The center
panel shows the average number of distinct limit cycles that
were reached when the network was initialized in 200 random
initial configurations. For values of k up to 8, the networks with
STDP and IP show the highest number of distinct limit cycles.
In general, networks with IP tend to produce more limit cycles
than their counterparts without IP. This observation is in line
with the idea that IP tends to “spread out” the dynamics and
distribute activity evenly over all units in the network. The right
panel shows the length of transients prior to reaching a limit
cycle. Networks with STDP tend to have very short transients,
i.e., they settle into a limit cycle very quickly. In contrast,
networks without STDP exhibit longer transients. Interestingly,
the transients in networks trained with IP alone can be orders
of magnitude bigger than those for all other networks. This
behavior mirrors the finding of very long limit cycles in these
networks (compare left panel).

3.3. Stability of limit cycles

To test the stability properties of networks shaped by
different forms of plasticity, we consider networks’ responses
to small external perturbations. We restrict our analysis to states
x(t) that are part of a limit cycle of the network by simply
simulating the system until it reaches a limit cycle. We select
a random state belonging to the limit cycle and by flipping the
activation of a randomly selected pair of neurons (an active
one and an inactive one) we create a perturbed state x′(t).
We calculate the successor state x′(t + 1) by applying (1)
and (2) and observe whether it is different from the successor
state x(t + 1) of the unperturbed state x(t). Repeating this
procedure many times allows us to estimate the probability
that the network changes its trajectory in response to a small
perturbation. In addition we also record the Hamming distance
d(t) between x′(t +1) and x(t +1) and divide it by the distance
d(t) between x′(t) and x(t). If d(t +1)/d(t) is bigger than one,
it means that the perturbation is amplified. If it is smaller than
one, then the perturbation is attenuated.2

The results of these analyses are shown in Fig. 5. The
left panel shows the average d(t + 1)/d(t) for networks with
different k in the different conditions. Results are averaged
over 50 networks and error bars represent standard error of the
mean. For all but the smallest k this value is smaller in the two
conditions using STDP, indicating that STDP has a stabilizing
influence on the network. For k ≥ 6 this value is bigger than one
for the IP and no plasticity conditions, indicating instability and
chaotic behavior.

The right panel of Fig. 5 shows the probability of
transitioning to a different successor state in response to a
small perturbation. Again, there is a clear difference between
the networks trained with STDP as compared to the networks
trained without it. For k ≥ 4 the STDP-trained networks
tend to produce limit cycles that are more stable. Interestingly,
the networks trained with the combination of IP and STDP
are more stable than the networks trained with STDP alone
according to this measure.

In conclusion, networks with different combinations of
plasticity mechanisms assume distinct structures of weights
and thresholds and exhibit quite different dynamics. It
is particularly noteworthy that networks trained with the
combination of STDP and IP develop the highest number of
distinct limit cycles while also making these limit cycles most
stable. This combination of stability and diversity may be a
useful computational property.
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Fig. 5. Stability of limit cycles in networks trained with different combinations of plasticity mechanisms. The left panel shows the average amplification/attenuation
of small perturbations in networks with different forms of plasticity as a function of k. The dotted horizontal line marks the critical value of 1. The right panel plots
the probability of not recovering from a small perturbation in the next time step. IP destabilizes the networks and makes them highly sensitive to small perturbations.
In contrast, STDP tends to stabilize the networks even if it is combined with IP.
Fig. 6. Architecture of input-driven networks used for assessing fading
memory properties of networks with different combinations of plasticity
mechanisms.

4. Fading memory in input-driven networks with different
forms of plasticity

As a first test of the computational properties of networks
shaped by different forms of plasticity we analyzed their ability
to exhibit a fading memory of random external inputs. To this
end we feed random input sequences into the networks by
adapting (1) in the following way:

hi (t + 1) =

(
N∑

j=1

Wi j (t)x j (t)

)
− Ti (t) + ui (t), (8)

where ui (t) is the time-varying input signal to unit i . These
inputs are derived from random sequences of four possible
states st ∈ {A, B, C, D} (compare Fig. 6). Each state was
independently chosen with p(st = S) = 1/4, S ∈

{A, B, C, D}. Associated with each possible input state is a
pool of units that receives input when this state is active. To
this end we randomly select four disjunct groups of size Np ∈

{0, 1, 2, . . . , N/4}. Each possible input state corresponds to one
pool of input-receiving units such that when st is in a particular
state, each unit in the corresponding pool of units will receive
a positive input ui (t) = u. The parameter u > 0 represents the
strength of the external input to the network. We also add four
linear read-out neurons that receive input from every unit in the
reservoir and that we can train to recall past inputs or predict
future inputs to the network.

4.1. Training procedure

To assess the presence of a fading memory of recent inputs
we use a procedure consisting of three phases: a pre-training
phase where the network is shaped by plasticity while it is
receiving random input sequences, a training phase where
plasticity in the network is switched off and a set of four
separate linear readout neurons is trained, and a test phase
where the network performance is evaluated.

During the pre-training period, we simulate the network
dynamics for 25,000 steps in the presence of inputs for different
combinations of plasticity present in the network. To ensure that
weight statistics are comparable across conditions we follow
the procedures introduced above.

After the pre-training, we fix the weights and thresholds
of the network and train the four linear read-out neurons, to
reproduce the input that had been presented τ time steps in
the past (training phase). This time offset τ could vary from
−12 (which input was presented 12 time steps ago) to +12
(which input will be presented 12 time steps in the future).
Note that since the input sequences do not have any predictable
structure, we expect that prediction performance (τ > 0) will
be at chance. To train the readout we use a minimum-square-
error method (the pseudo-inverse), that minimizes the squared
difference between the output of the readout neurons and the
correct output.

4.2. Memory performance

Fig. 7 shows the average performance of networks shaped
by different combinations of plasticity mechanisms on an
independent input test sequence of 5000 time steps. Network
parameters were N = 100, k = 12, ηSTDP = 0.001, ηIP =

0.001. Input parameters were Np = 25, u = 0.25. Results
are averaged over eight independent experiments with error
bars indicating the standard error of the mean. We can see
that performance in the STDP condition is very poor, while
the IP, STDP + IP, and no plasticity conditions seems to be
comparable for the chosen parameters, with the IP condition
performing worst of the three. It is noteworthy that although
both the STDP and the IP conditions perform worse than
the no plasticity condition, the STDP + IP condition actually
performs best. Although the relative ordering of the four
conditions depends on the choice of parameters to a certain
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Fig. 7. Fading memory property for networks (N = 100, k = 12) shaped
by different plasticity combinations. The networks were driven by a random
time series with four possible states (Np = 25, u = 0.25). The classification
performance based on the linear readout (chance level of 25%) was averaged
over eight independent experiments. Error bars represent the standard error of
the mean.

degree, this finding demonstrates that STDP and IP interact
in non-trivial ways to shape the structure and dynamics of our
networks. It also means that networks self-organizing through
a combination of different plasticity mechanisms may function
well as reservoirs of DRNs, which typically use fixed, randomly
connected reservoirs.

5. Time series prediction in input-driven networks with
different forms of plasticity

While it is noteworthy that networks with STDP and IP have
a fading memory property for random input sequences, which
is similar to that of randomly connected networks without
plasticity, it is an open question to what extent such networks
may discover structure in non-random, i.e., predictable, time
series. Since the STDP rule has a “causal” logic to it, we
hypothesize that networks with STDP and IP may be able to
discover structure in the inputs and capture it in their weights.
In addition, they may also perform well on prediction tasks
for structured time series. To test this hypothesis, we train
networks with different forms of plasticity to predict time series
generated by first and second order Markov processes.

5.1. Structured input sequences

We consider Markov processes with four states denoted
A, B, C , and D. Corresponding to each of the four states
we define a group of units in the network that will receive a
positive input u if their state is active as described above and
illustrated in Fig. 6. The order 1 Markov process is defined
such that with a probability λ, B is the successor state of A,
C that of B, D that of C , and A that of D, establishing a
preferred sequence A → B → C → D → A → · · · in
the Markov process. All other non-preferred transitions occur
with a smaller probability of (1 − λ)/3. For λ = 1 the Markov
process behaves deterministically, following a periodic orbit of
length of 4, while it is completely unpredictable for λ = 1/4.
In order to create a prediction task where memory of
previous states is necessary to make accurate forecasts, we
use a second order Markov process. This way, probable next
states will not only depend on the current state but also on its
predecessor. We select the transition probabilities in a similar
fashion that also embeds a preferred sequence of states into the
Markov process. In particular, we define a set of 16 preferred
transitions with an associated probability λ that gives rise to
a preferred orbit of period 16, while the remaining 48 non-
preferred transitions occur with a probability of (1 − λ)/3.
Concretely, the set of preferred transitions is:

1: (A, B) → C 2: (B, C) → C

3: (C, C) → D 4: (C, D) → C

5: (D, C) → B 6: (C, B) → D

7: (B, D) → D 8: (D, D) → A

9: (D, A) → C 10: (A, C) → A

11: (C, A) → A 12: (A, A) → D

13: (A, D) → B 14: (D, B) → B

15: (B, B) → A 16: (B, A) → B.

Again, for λ = 1 this Markov process will deterministically
travel along the set of 16 preferred transitions, while for λ =

1/4 it is completely unpredictable.

5.2. Emergent network structure

To investigate the impact of predictable input sequences
on the emergent network structure, we compare the weight
matrices of networks trained with different forms of plasticity.
All training procedures were identical to those in the last
section. The only difference stems from the different input
sequences. Fig. 8 compares the weights for networks in
the STDP (left panels) and STDP + IP (right panels)
conditions. Networks receive either predictable (upper row) or
unpredictable (lower row) inputs from a first order Markov
process. The STDP mechanism in the networks is able to
capture the predictable input structure (upper row). This is
reflected in the strengthening of connections corresponding to
the preferred transitions in the Markov process. For example,
the pool PA of input receiving units associated with state
A of the Markov process develops many strong weights to
pool PB , consistent with A → B being one of the preferred
transitions. Thus, the STDP rule imprints the structure of the
input sequence into the networks.

An interesting difference between the STDP and STDP + IP
conditions is that the latter tends to produce a higher number of
strong weights. This is in line with our result that IP will tend
to make more units participate in the network’s dynamics on a
regular basis, allowing some of their weights to grow strong.

5.3. Prediction performance

We assessed the amount of information that the network
state contains about past or future inputs in the following way.
After the pre-training period, we hold the network’s weights
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Fig. 8. Weight matrices for networks from the STDP and STDP + IP conditions for predictable (Markov order 1, λ = 0.9) and completely random input sequences.
Networks use N = 100, k = 12 and input parameters are (Np = 15, u = 0.25). The strength of the weights is coded by its grey level. Four input populations PA ,
PB , PC , PD activated by the respective state of the Markov process are indicated. When the input sequences contain predictable structure (upper row), the STDP
mechanism captures it in the structure of the weight matrix.
and thresholds fixed, and train the linear read-out neurons to
predict the input that will occur τ time steps in the future
(τ > 0) or to recall past inputs (τ < 0). All procedures are
identical to the ones in the previous section.

Fig. 9 shows results for example networks with N = 100
and k = 12 for a varying τ ranging between −12 and 12.
Results are averaged over eight independent experiments. The
input strength is intermediate with u = 0.25 and Np = 15. The
performance of the STDP condition is very poor while the other
conditions perform adequately, with the STDP + IP condition
having a slight advantage over the others. Not surprisingly,
performance is better for the first order Markov process as
compared to the second order Markov process.

To investigate the impact of different parameters on the
classification performance for each plasticity combination
we systematically varied the sparseness parameter k, the
population sizes receiving input Np, the preferred transition
probability λ, the input drive u, and the order of the Markov
process. To investigate which plasticity condition yields the best
overall performance we average the classification performance
across all τ for the same parameter set and plasticity
condition. Across plasticity conditions we identified significant
differences by an ANOVA in combination with post hoc
pairwise comparisons of the best average performance to the
second best (t-test, test-level 5%). Fig. 10 summarizes for which
parameter set which of the plasticity conditions outperformed
the others.
Interestingly, the IP and STDP conditions rarely outperform
the others, as shown in Fig. 10. The reason for the poor
performance of networks trained by STDP alone is that the
STDP networks will almost exclusively strengthen weights
corresponding to the preferred input sequence and they
eventually become completely independent of any input.
Conversely, the IP networks seem to suffer from their dynamics
being too chaotic. Networks in the no plasticity and STDP + IP
conditions perform best on this task. In particular, no plasticity
networks performed best in 79 out of 420 tested parameter
sets, while networks trained in the STDP + IP condition
performed best for 64 of the tested parameter sets (compare
panels A3, B3 of Fig. 10). Thus performance of the two network
types is comparable when averaged across all tested parameter
settings. However, differences between random networks and
networks trained by STDP and IP occur systematically and are
clustered for certain parameter regimes. In general, networks
trained by STDP and IP seem to outperform the other plasticity
combinations in case of intermediate input strengths with
u = 0.05 and u = 0.5. In contrast, very low inputs seems not
to induce differences between all four plasticity combinations,
while for strong inputs random networks seems to perform best.

Fig. 10 panels A2 and B2 show the absolute performance
of the best performing plasticity condition for each parameter
setting. Two trends are clearly visible. First, performance
improves with higher λ, i.e., more predictable time series.
Second, larger inputs tend to be beneficial.
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Fig. 9. A1: Prediction and recall performance of networks (N = 100, k = 12) shaped by different plasticity combinations for varying time offsets τ . The input
consists of a first order Markov process with four states (chance level 25%) with a preferred sequence of transitions embedded in it (λ = 0.65). Input parameters
are Np = 15 and u = 0.25. Results are averaged over eight networks. Error bars indicate standard deviations. A2: same as A1 but for a more predictable Markov
process with λ = 0.9. B1, B2: same as A1, A2 but for Markov processes of order 2.
Since the performance of DRNs has been associated with
criticality of their dynamics, we investigated to what extent
the different plasticity combinations favor critical dynamics.
To this end we performed a perturbation analysis as described
earlier and compared d(t + 1)/d(t) for input-driven networks
with different combinations of plasticity rules. The results
for all parameter settings described above are summarized
in Fig. 11. In line with their poor performance, networks in
the STDP condition tend to have very small values of d(t +

1)/d(t). They are clearly sub-critical. Conversely, networks
in the IP condition are strongly super-critical, indicating
chaotic behavior, which is again consistent with their poor
performance. Networks in the no plasticity and STDP + IP
conditions exhibit dynamics that are closest to criticality, which
reflects their superior performance. Interestingly, however,
although the STDP + IP networks are closest to criticality,
their performance is not systematically better than that of the
no plasticity condition.

6. Discussion

In recent years, a number of recurrent network architectures
for time series processing have been proposed that rely on a
fixed, randomly connected reservoir of units (Jäeger & Haas,
2004; Maass et al., 2002). When the parameters of such
networks are carefully tuned, such networks exhibit a fading
memory of recent inputs. It has been argued that such networks
perform particularly well when they are operating at the “edge
of chaos” (Bertschinger & Natschläger, 2004). Such networks
had considerable success in solving difficult prediction and
filtering problems. However, the idea of a randomly structured
reservoir is somewhat dissatisfying for at least two reasons.
First, from the perspective of biological plausibility the idea
of random networks is clearly at odds with the ubiquitous
presence of various forms of plasticity that structure cortical
networks in well-defined and reproducible, i.e., non-random
ways. Second, from an engineering perspective, it would appear
quite frustrating if random networks were ideally suited for
performing purposeful computations on structured input data
and no further improvements were possible.

We have investigated how two different forms of neuronal
plasticity, spike timing dependent plasticity (STDP) and
intrinsic plasticity (IP), interact to shape the structure,
dynamics, and computational properties of simple recurrent
spiking networks. Our analysis led to five conclusions. First,
STDP and IP interact in non-trivial ways such that the effect of
one of them on network behavior can be substantially altered
by the presence of the other. Second, networks trained with a
combination of STDP and IP lead to many limit cycles with
stable network behavior in the presence of small perturbations.
Third, networks trained with a combination of STDP and IP
exhibit a fading memory property that is comparable to random
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Fig. 10. A1: Optimally performing network conditions for the first order Markov process for a range of parameter settings with different k, Np , u, and λ. Empty
squares indicate that no plasticity condition was significantly better than all the others. A2: Average absolute performance of the best performing plasticity condition.
Light squares indicate good prediction/recall performance. A3: Histogram indicating how often each plasticity condition performed significantly better than the
others. B1–3: Same as A1–3 but for the second order Markov process.
networks or networks trained with IP, while networks trained
with just STDP perform significantly worse than the others.
Fourth, the combination of STDP and IP allowed networks to
discover temporal structure in their inputs. The “causal” nature
of the STDP rule allowed the reservoir to learn structure in the
time sequences corresponding to likely sequences of external
inputs. The intrinsic plasticity enforced “balanced” dynamics
that utilize all resources in the network. Together, these
mechanism allowed recall and prediction performance that was
similar to that of randomly structured reservoirs — performing
significantly better in some parameter regimes and worse in
others. Fifth, the combination of STDP and IP can lead to the
emergence of network dynamics that are close to criticality.

In future work we would like to verify the generality of
the observed effects. To this end, it will be interesting to
see if the same or similar phenomena exist in networks with
more realistic model neurons and plasticity mechanisms. For
example, is it a general property of networks with STDP and IP
that they develop dynamics close to criticality and, if so, how
can this behavior be understood? Another important task for
future research is to better understand these forms of plasticity
and their effect on network dynamics in terms of information
theoretic optimality principles. Interestingly, both STDP and IP
have been linked to the concept of information maximization.
Several groups have tried to derive STDP-like learning rules
using an information maximization approach (Chechik, 2003;
Fig. 11. Criticality of networks with different forms of plasticity used for
time series prediction. For each plasticity condition and order of the input’s
underlying Markov process, we show a box plot of the distribution of d(t +

1)/d(t) across all parameter settings described in the text and summarized in
Fig. 10. The horizontal dashed line marks the critical value of 1. On average,
the networks trained with STDP + IP tend to be closest to criticality.

Toyoizumi, Pfister, Aihara, & Gerstner, 2005). For IP it has
also been suggested that it may contribute to maximizing
information transmission (Stemmler & Koch, 1999; Triesch,
2005a, 2005b). This raises the hope that a unified framework
can be developed that explains the roles of different forms
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of plasticity in purposefully structuring the dynamics and
computational properties of cortical networks.
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