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Abstract – In this letter, we study complete synchronization in quite generic networks of coupled
oscillators, where both the connectivity topology and coupling mechanism may be arbitrary. We
propose a method, i.e., introducing an auxiliary hub which decreases the average path length and
meanwhile increases the clustering coefficient of the network, to achieve complete synchronization.
We demonstrate that the method is successful in synchronizing some classical network models,
which cannot synchronize intrinsically. That is, a network, which itself is impossible to synchronize,
can adaptively achieve the complete synchronization by introducing an auxiliary hub. The present
results give insights on how the network structure influences the synchronizability and how the
synchronization of generic networks can be achieved regardless of their own complexity.
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Recently, there is a highly focused interest in networks
of coupled oscillators, which constitute many models in
nature. One of the most striking phenomena in these
models is the spontaneous synchronization, which can
be observed in various types of systems, such as living
and nonliving oscillators at every scale ranging from the
nucleus to the cosmos [1–4]. On the other hand, it has been
shown that most of the real networks have very distin-
guished connectivity structures, such as small-world prop-
erty and scale-free structure, etc. [5–9]. The investigation
of the dynamics of such complex networks is and will be
a big challenge in current and future research. Mainly
two questions have to be addressed. First, how does
the connectivity topology in networks influence synchro-
nizability? Second, which mechanisms can achieve the
synchronization irrespective of the individual topologies
in complex networks? The first question concerning the
influence of the topology has been intensively investi-
gated over the past years [10–14]. Other studies focused
on the question how to enhance the complete synchro-
nization by choosing the coupling mechanism but not
altering the connectivity topology in networks, such as
weighted networks [15–17], adaptive networks [18,19], etc.
Anyway, more evidences show that the characteristics of
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complex networks, e.g., the smaller average path length,
may enhance the synchronizability.
In this letter, we address the second question by

asking how to achieve the complete synchronization of
network dynamics regardless of the intrinsic complexity of
networks. The network considered here is quite generic in
the sense that the connectivity structure and the coupling
mechanism may be arbitrary. For generic networks of
oscillators, the complete synchronization is in general
difficult to achieve due to the dynamics of individual
oscillators, the form of coupling, or the complexity of
connectivity topology. As we know, an ideal hub will
dramatically decrease the average path length, and mean-
while increase the clustering coefficient of networks. In
nature, hubs are quite popular in complex networks, and
may arise as an example by preferential attachment in the
evolution of scale-free networks. Therefore, and motivated
by the idea that the smaller average path length may
enhance the synchronizability, we demonstrate in this
letter that complete synchronization can be achieved
by introducing an auxiliary hub without altering the
connectivity topology or the coupling mechanism in the
pristine networks.
We start by considering a generic network of N identical

oscillators

Ẋi = F (Xi)+Hi(X1, · · · ,XN ), i= 1, 2, · · · , N, (1)
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where F (X) governs the dynamics of individual oscilla-
tors, and Xi = (xi1, · · · , xim)∈Rm denotes m state vari-
ables of the i-th node. The functions Hi, i= 1, 2, · · · , N,
constitute the network structure, which is supposed to
have arbitrary connectivity topologies and coupling mech-
anisms. We assume Hi(X, · · · ,X) =Hj(X, · · · ,X) for all
i, j = 1, 2, · · · , N and any X ∈Rm, so that the synchro-
nous manifold M = {X1 =X2 = · · ·=XN} is invariant in
system (1). Generally, it is very difficult or impossible
to achieve the synchronization in such networks due
to the complexity of the node’s dynamics, i.e., F (X),
or the connectivity structure and coupling mechanism,
i.e., Hi(X1, · · · ,XN ). Here, our goal is to investigate the
complete synchronization by introducing an auxiliary hub
into the network (1). Denoting the state variables of the
hub by Y = (y1, y2, · · · , ym), we obtain a new network of
(N +1) coupled oscillators

Ẋi = F (Xi)+Hi(X1, · · · ,XN )+Ui(Xi, Y ), (2a)

i= 1, 2, · · · , N,
Ẏ = F (Y ), (2b)

where Ui(Xi, Y ) is the coupling from the i-th node to the
hub Y . We let Ui(X,X)≡ 0 for all i= 1, 2, · · · , N and any
X ∈Rm, which implies that the addition of the hub is only
auxiliary for the complete synchronization of the original
network (1). Also note that such hub is unidirectionally
coupled with other nodes, and hence is different from the
generic hub in networks. For convenience, we refer to
the old network (1) as the pristine network. We address
the problem: Is it possible to achieve the synchronization
in the pristine network (1) by such an auxiliary hub with
a certain coupling Ui in (2)?
For clarity, we consider generic networks of diffusively

coupled oscillators with the common output, i.e.,

Ẋi = F (Xi)+
N∑

j=1

gij(H(Xj)−H(Xi)), i= 1, 2, · · · , N,
(3)

where H(X) is the output function of individual oscil-
lators, and G= (gij) is a generic coupling matrix.
The matrix G may be divided into two matrices, i.e.,
G=C ⊗W defined by gij = cijwij . The matrix C = (cij)
denotes the connectivity matrix of networks, i.e., cij = 1,
if there is a connection between the i-th node and the
j-th node, cij = 0, otherwise. The matrix W = (wij) is the
matrix of weighted coupling, and wij denotes the coupling
strength between the i-th node and the j-th node, where
wij = 0 if cij = 0. So the matrix C is the binary adjacency
matrix showing the complexity of network structure, and
it may be regular, random, or the connectivity matrix
constituting small-world or scale-free networks. The
coupling may be weighted or unweighted (i.e., wij ≡ σ,
if wij �= 0), and linear or nonlinear (i.e., the coupling
function H(X) is nonlinear). To realize the complete
synchronization in the pristine network (3) regardless of

its intrinsic complexity, we introduce an auxiliary hub
with adaptive unweighted vector coupling, and obtain a
new network of oscillators

Ẋi = F (Xi)+

N∑

j=1

gij(H(Xj)−H(Xi))+ k(Y−Xi), (4a)

i = 1, 2, · · · , N,
Ẏ = F (Y ) (4b)

with an adaptive coupling strength

k̇= γ

N∑

i=1

‖ Y −Xi ‖2, (4c)

where γ is an arbitrary positive constant, and
‖ Y −Xi ‖2=

∑m
l=1(yl−xil)2. To guarantee the coupling

is sufficiently weak, we generally let 0<γ� 1. The
introduction of the variable coupling (4c) is to adaptively
find the suitable coupling strength, regardless of the
complexity of the pristine networks. Such adaptive
law may be replaced with other forms, e.g., replacing∑N
i=1 ‖ Y −Xi ‖2 in (4c) by

∑N
i=1 ‖ Y −Xi ‖2 /(1+∑N

i=1 ‖ Y −Xi ‖2). Similar to the results in [19,20], some
necessary conditions, e.g., the uniform Lipschitz condition
on the functions F (X) andH(X), are needed to guarantee
the stable synchronization motion in (4). Also note that
the partial variables (not complete vector) coupling with
the hub is sufficient in some cases, see examples below.
Now we consider a concrete network, i.e., the classic

network model of x-coupled Rössler oscillators. In the
model, the state variables of the individual oscillators
X = (x, y, z), the dynamics function F (X) = (−y− z, x+
0.2y, 0.2+ (x− 7)z), and the coupling (i.e. output) func-
tion H(X) = (x, 0, 0). This network consists of a ring of
N nodes each coupled to its 2n nearest neighbors with
the overall strength σ, i.e., the coupling matrix is in the
form of G= σC, where the adjacency matrix C = (cij) is a
circulant matrix with 1 on 2n (circulantly) adjacent diag-
onals, 0 otherwise. The network dynamics is governed by

ẋi =−yi− zi+σ
N∑

j=1

cij(xj −xi),

ẏi = xi+0.2yi,

żi = 0.2+ (xi− 7)zi,

(5)

This model has been extensively investigated by the
method of the master stability function in refs. [11,21].
It is well known that such network is difficult to synchro-
nize due to the short-wavelength bifurcation. Especially,
the overall coupling strength σ is crucial for the synchro-
nization of the network, and the complete synchronization
can be achieved only in a finite interval of σ. On the other
hand, as the size of the network is increased, the effective
interval of σ for the synchronization is smaller and smaller,
and eventually approaches zero. This indicates that there
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exists an upper limit on the number of coupled oscilla-
tors for synchronizing the network. In this letter, we let
σ= 5 be a fixed value, so that the pristine network cannot
synchronize even for the smallest number of nodes (i.e.,
N = 2). To achieve the complete synchronization of such
pristine network, which is itself impossible to synchronize,
we introduce an auxiliary hub X = (x, y, z) to give a new
network with adaptive y-coupling

ẋi =−yi− zi+σ
N∑

j=1

cij(xj −xi),

ẏi = xi+0.2yi+ k(y− yi),
żi = 0.2+ (xi− 7)zi,

(6a)

ẋ=−y− z, ẏ= x+0.2y, ż = 0.2+ (x− 7)z (6b)

k̇= γ
N∑

i=1

(y− yi)2, (6c)

where i= 1, 2, · · ·, N . Numerical results show that the
pristine network is synchronizable with such an auxiliary
hub. Figure 1 shows the temporal evolution of the absolute
synchronization error E defined by E =

∑N
i=1[|xi−x|+

|yi− y|+ |zi− z|] and the adaptive coupling strength k,
where the pristine network structure is the simple cycle
configuration, i.e., n= 1. Further, we investigate the influ-
ence of the connectivity structure on the synchronizability
in this network. Note that as the average degree of the pris-
tine network, d= 2n, is increased (i.e., n is increased), it
was shown in [11] that the upper limit of the number of
nodes for the synchronization is increased. This indicates
that increasing the average degree enhances the synchro-
nizability of the network dynamics (5). However, in the
present consideration the overall strength σ is fixed as 5,
which exceeds the finite interval of σ for the synchroniza-
tion. So we speculate that in such case the increase of n will
be a negative contribution to the complete synchronization
of the pristine network (5). This can be certified by investi-
gating the network with an auxiliary hub, i.e., system (6).
By numerically stimulating the network (6) with the differ-
ent values of n, we find that the converged coupling
strength, kc (i.e., k→ kc), increases as n increases, see
fig. 2. We also find that the addition of a few shortcuts
in the pristine network will enhance the synchronizabil-
ity. However, when too many random shortcuts are added
to the pristine network the converged coupling strength
in the network (6) will increase. This implies that with
a bigger overall coupling strength σ (here σ= 5) the
addition of too many random shortcuts weakens the
synchronizability in the pristine network.
Next we consider the case that the introduced hub is

weighted coupled with the pristine network. Simply, we
realize such a coupling through replacing the coupling
control Ui = k(Y −Xi) and the adaptive law k̇=

γ
∑N
i=1 ‖ Y −Xi ‖2 in system (4) by Ui = ki(Y −Xi) and

k̇i = γ ‖ Y −Xi ‖2, respectively. Applying this coupling
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Fig. 1: (a) and (b) show the temporal evolution of the
absolute synchronization error E =

∑N
i=1[|xi−x|+ |yi− y|+

|zi− z|] and the adaptive coupling strength k in system (6),
respectively, where the pristine network structure is the simple
cycle configuration, i.e., n= 1.
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Fig. 2: The relation between the converged value kc of coupling
strength k in system (6) and the average degree d= 2n of its
pristine network, which shows that kc increases as n increases.

scheme to the network of x-coupled Rössler oscillators,
gives

ẋi =−yi− zi+σ
N∑

j=1

cij(xj −xi),

ẏi = xi+0.2yi+ ki(y− yi),
żi = 0.2+ (xi− 7)zi,

(7a)
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Fig. 3: (a) and (b) show the temporal evolution of the absolute
synchronization error E and the average coupling strength
K = 1

N

∑N
i=1 ki in the weighted coupling system (7), respec-

tively, where the connectivity structure in its pristine network
is same as that in fig. 1.

ẋ=−y− z, ẏ= x+0.2y, ż = 0.2+ (x− 7)z (7b)

k̇i = γ(y− yi)2, (7c)

where i= 1, 2, · · · , N . The synchronizability of such
network is shown in fig. 3, where the pristine network
is chosen as the simple cycle configuration (i.e., n= 1).
To compare with the unweighted coupling, we normalize
the adaptive law of the coupling strength, i.e., replacing∑N
i=1(y− yi)2 in (6c) by 1N

∑N
i=1(y− yi)2. We find numer-

ically that for almost all initial values the converged value
of the average coupling strength K = 1

N

∑N
i=1 ki in the

weighted coupling is smaller than the converged strength
of k in the unweighted one. A similar result is also found
in the case that

∑N
i=1(y− yi)2 in (6c) and (y− yi)2 in

(7c) are replaced by
∑N
i=1(y− yi)2/[N +

∑N
i=1(y− yi)2]

and (y− yi)2/[1+ (y− yi)2], respectively.
(Remark : In all numerical stimulations above we let
N = 100, γ = 0.001, the initial-state values be same, which
are randomly chosen, and the initial coupling strength k
(or ki) be always zero.)
Finally, we consider the case that the pristine network

is nonlinearly coupled, i.e., the coupling function H(X)
in (3) is nonlinear. Such mechanism of nonlinear coupling
is universal in nature, e.g., pulse coupling in biological
networks. The numerical evidence of synchronization in
such networks has not yet been studied in its full details.
Here we only give a case study. Again we use the model
of x-coupled Rössler oscillators with H(X) = (ex, 0, 0) to
illustrate that the present synchronization scheme based
on the auxiliary hub is still effective. For the case of the
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Fig. 4: (a) and (b) show the temporal evolution of the absolute
synchronization error E and the coupling strength k in the
network (8) with nonlinearly coupled oscillators, respectively.

simple cycle configuration the network with an auxiliary
hub is given by

ẋi =−yi− zi+σ(exi+1 − 2exi + exi−1),
ẏi = xi+0.2yi+ k(y− yi),
żi = 0.2+ (xi− 7)zi,

(8a)

ẋ=−y− z, ẏ= x+0.2y, ż = 0.2+ (x− 7)z (8b)

k̇= γ

N∑

i=1

(y− yi)2, (8c)

where i= 1, 2, · · ·, N , x0 = xN , and xN+1 = x1. The
responding numerical results are shown in fig. 4, where
N = 100 and γ = 0.04.
These examples above show that the addition of an

auxiliary hub can achieve the complete synchronization
of a network, which is itself impossible to synchronize.
The efficiency of such synchronization is involved to
the dynamics of nodes, i.e., the function F (X), the
coupling function H(X), and the coupling matrix G in
the pristine network (3). For example, when we replace
the coupling function H(X) = (ex, 0, 0) in system (8) by
H(X) = (x2, 0, 0), the network cannot synchronize. As
shown above, in particular, the topology structure in the
pristine network influences such synchronization scheme.
So the prior knowledge about the pristine network is
helpful to perform the synchronization more effectively.
For example, for those networks with heterogeneous
distribution it is probably not necessary to couple the
auxiliary hub with all nodes. These problems remain to
study further.
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In conclusion, from the perspective of physics the
addition of such an auxiliary hub is equivalent to giving a
common driving to each node in the networks. Therefore,
the present results indicate that a network, regardless of its
own complexity, may be synchronized by a certain control,
e.g., k(Y −Xi) in (4), which gives an insight into how to
control the complete synchronization of complex networks.
This also agrees with the phenomenon of neural biology:
A common stimulus (e.g., the visual stimulus) may drive
the neural networks to produce the coordinative behavior
although the intrinsic mechanism of the networks is very
complex. Thus, the present results have potential applica-
tions to explore the dynamics mechanism of the collective
behavior in the neural networks, an important neuronal
activity [22]. In particular, the networks in the form of (4)
combining the linear and nonlinear couplings may be used
to investigate the complementary role of electrical and
chemical synapses in the synchronization of interneuro-
nal networks [23], where linear couplings represent gap
junctions, and nonlinear couplings represent excitatory
or inhibitory synapses. Recent studies on complex brain
dynamics in [24] enhance the possibility of the idea above,
i.e., the extension of the proposed scheme to investigate
the relevance of synchronization in artificial or natural
systems and clustered synchronization in neural systems.
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