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Abstract. In this paper we study the impact of presynaptic activity
that is deviating from Poissonian firing onto the postsynaptic firing of
an conductance based integrate and fire neuron. We first show that the
compound activity of a large group of neurons, e.g. presynaptic cells,
cannot be described by a Poisson process in general. Then we demon-
strate that the auto-structure of the presynaptic drive has strong impact
onto the auto-structure of the postsynaptic spike-train. And finally, we
discuss the potential impact of non-Poissonian presynaptic activity on
the structure formation in recurrent networks based on Spike Timing
Dependent Plasticity (STDP).
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1 Introduction

Neuronal self-organization and structure formation in recurrent networks have
been proposed to be crucial elements in shaping the way the brain processes infor-
mation [1–4, 7]. However, most theoretical and simulation based approaches that
investigate neuronal self-organization tacitly use the assumption that spiking ac-
tivity can be modeled by Poisson point processes. Since it is now undoubted that
real neuronal activity is often strongly deviating from Poisson processes these
theoretical and simulation based approaches might lack a major component of
real neuronal firing.
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Fig. 1. (A1-3) Raster plot for 50 trials of Gamma-processes with 3 different coef-
ficient of variations of the inter-spike interval distribution (A1: CV =0.1; A2: CV =1,
A3: CV =3). (B) Distribution of coincidence counts shared by pairs of mutually in-
dependent Gamma-processes of the same kind as shown in A. Dashed curves in (B)
shows the coincidence count distribution for the cases of Poisson processes (γ = 1)
and a Gamma-process with CV =0.1. Coincidences were evaluated per trial based on a
binned version (bin-length: ∆t = 4 ms) of the original renewal process. Each distribu-
tion in B represents sample from T = 100000 trials of each 5 s length. The spike rate
was chosen to be R = 50 ap/s.

2 Presynaptic activity deviating from Poisson

A typical cortical neuron receives input from many, up to more than 104, other
neurons. Taking the presynaptic neurons as independent it was believed that the
compound process of the activity of many input spike-trains can be described as
a Poisson process [5, 6]. In this case the auto-structure of individual pre-synaptic
neurons could be ignored and a Poissonian statistics would have been a good
approximation.

However, it has been shown analytically that this belief is wrong [8]. Lind-
ner demonstrated that only the inter-spike interval (ISI) distribution and the
ISI correlation at a finite time-lag approaches the ones of a Poisson process in
the limit of large number of presynaptic spike-trains. Nevertheless, the power-
spectrum of the compound process is identical to the power spectrum of the
original spike-trains. This clearly demonstrates that presynaptic activity that
is individually non-Poissonian will lead to a also non-Poissonian compound ac-
tivity. For example, individual either regular or oscillatory presynaptic activity
will lead to the same type of regular or oscillatory spiking in the compound
process at the same time scale. This occurs even if many thousands spike-trains
are added up. Hence, the impact of any presynaptic activity that is for example
either regular or oscillatory is falsely ignored by present studies that model the
compound activity as Poisson processes.
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Fig. 2. Auto-correlation of the coincidences of Gamma-point processes (A), and a log-
normal -point processes (B) with a CV of 0.1 of the inter-spike interval distribution. A
bin-length of ∆t = 4 ms was used. The Auto-correlation is computed for time-lags τ
with τ = k ·∆t). The spike rate were chosen to R = 50 ap/s. Solid line indicate results
derived from simulations, while circles locate an analytical evaluation.

3 Impact of Non-Poissonian firing on synchronous drive

Neurons are very sensitive to the synchronous firing of sub-populations, espe-
cially if they are in a state of balanced excitation and inhibition. Under this
regime the membrane potential of a neuron is typically fluctuating around its
spiking threshold and a small number of coincident input can be particularly
effective in driving the cell above threshold. It is therefore important for to
determine the parameters affecting the synchrony of presynaptic spike-trains.
Only recently the influence of the auto-structure of renewal processes on the
likelihood of synchronous firing between mutually independent processes was
studied in Ref.[9]. The authors described the influence of the auto-structure of
different mutually independent renewal processes (Fig. 1, panels A1-A3) on the
shape of the coincidence count distribution (Fig. 1, panel B) and on the auto-
correlation of coincidences (Fig. 2) for individual and independent trials. To this
end the authors described the shape of the distribution by the Fano factor FFC

of the coincidence distribution. Please note that the Fano factor FFC is equal
to a scaled variance in case of a renewal processes, since the expected frequency
of coincidences is independent of the type of the process [9].

Neuronal activity is continuous stream in time. Therefore the concept of
individual and independent trials might look inappropriate. However, if the auto-
correlation time of the spiking activity is short compared to the length of trials,
one can understand trials as subsequent and independent pieces taken form
the same continuous stream of neuronal activity. In this case, the Fano factor
expresses the variability of counts of coincident events for different periods of
the neuronal activity. In other words, the Fano factor FFc describes the degree
of clustering of coincidences in time. Please note that since the expected value
of coincidences is independent of the type of the renewal process, different auto-
structures lead only to a redistribution of the same number coincidences and
therefore to different clustering in time.
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Fig. 3. (A) Fano factor of the coincidence count distribution as a function of the model
CV , for a Gamma-process and a log-normal -process. Coincidences were evaluated based
on a binned version (bin-length: ∆t = 1 ms) of the original renewal process. Both
process types (Gamma- and log-normal) were parameterized by the product of the
bin-length ∆t in units of seconds and the firing rate R in units of [ap/s] (see legend).
Each estimation of the CV or Fano factor was based on T = 2000 trials of each 5 s
length. The spike rate were chosen to R = 50 ap/s. (B) Analytically determined Fano
Factor FFC of the coincidence count distribution for two neurons with different rate
R1 = R + ∆R and R2 = R−∆R as function of ∆R/R. Gamma-processes with shape
parameter γ = 2, 4, 8, 16, 32 are explored. R∆t = 0.2.

4 Clustering of synchronous activity in time

We have studied then the Fano factor FFC as a measure of clustering of syn-
chronous activity for renewal processes with Gamma- and log-normal -distributed
interspike intervals. The Fano factor of the coincidence count distribution for
pairs of processes with identical spike-rates is represented in Fig. 3A for several
coefficients of variations (CV ). High values of FFC indicate strong clustering. To
describe the changes of FFc we will use the Poisson process as a reference model
since the Poisson process was commonly used in modeling studies. We have ob-
served that only intermediate regularity in the processes (0.2 < CV < 0.8) lead
to smaller values of FFc and consequently to less clustering than in the case
of a Poisson process. For very low and very high CV s (corresponding to very
regular and bursty spiking, respectively) the Fano factor can exceed the FFC

of a Poisson process by a factor larger than 2. However, if the two independent
processes have different rates (Fig. 3B), the FFc and therefore the clustering
of synchrony for Gamma-processes is in general lower than in case of a Poisson
process that exhibits a FFc = 1.4 for the given parameters.

In summary, our first major finding is that deviations from individual Poisso-
nian firing can induce clustering of coincidences between mutually independent
point-processes in time. The amount of clustering depends on the detailed prop-
erties of the inter-spike interval distribution, and can be described by the Fano
Factor FFc of the coincidence count distribution. Our second major finding is
that the clustering depends very critically on whether the rate across different
point-processes it the same or not. We found that small differences of the the
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spike-rates of two processes in the order of a few percent can cause changes in
the clustering measured by changes of FFc of up to 50% in some cases (Fig.
3B). The third major finding is that both, bursty and regular firing, can induce
clustering of coincidences. However, the underlying mechanism and cause of the
clustering for bursty and regular processes is different. In the case of bursty pro-
cesses clustering is due to a repeated firing of individual neurons in a period as
short as the bin-width ∆t that defines the time-scale of a coincidence. In con-
trast, in case of regular firing clustering is caused by a kind of periodic repetition
of the same pattern on a time-scale defined by the expected inter-spike interval.

5 IF neurons and presynaptic Gamma-processes

A prior step in demonstrating that deviations from Poissonian firing can modu-
late the structure formation in recurrent networks based on neuronal plasticity
like STDP, is to show first that different variations of non-Poissonian presynaptic
activity impact the postsynaptic spiking activity of a neuron.

To this end we simulated a conductance based Integrate and Fire neuron that
receives input from one excitatory and one inhibitory population, with NE = 400
and NI = 100 cells, respectively. Exponentially decaying synaptic currents with
time constants τampa = 2 ms and τgaba = 5.6 ms were used respectively for the
AMPA and GABA mediated receptors. The membrane time constant was set to
τm = 20 ms. The synaptic conductance strength ggaba and gampa were chosen
to be identical across all synapses of the same type. We model the postsynaptic
neuron to be in a state close to balanced excitation and inhibition. To this end we
defined gampa and ggaba based on the balance between excitation and inhibition
β as well as the total conductance in units of the leakage conductance gleak.
Motivated by studies that measured this relation in vivo we have chosen the
total conductance to be four times higher than the leakage.

Panels A in Figure 4 shows the postsynaptic spike triggered average of the
presynaptic spike activity, which describes the average presynaptic activity of the
excitatory population (upper trace) and the inhibitory average activity (downer
trace) in a window center around a postsynaptic spike. For the two point pro-
cesses studied (Poissonian in A1 and Gamma-distributed in A2), on average
an increase in the excitatory and/or a decrease in the inhibitory activity are
necessary to drive the postsynaptic neuron to spike. Please note that both are
by definition random fluctuation since the presynaptic activity has a constant
expected spike count and is mutually independent across neurons. Remarkably,
the the presynaptic spike triggered average for regular Gamma-processes (Fig.
4, A2) shows a damped periodic oscillation with the expected interspike interval
of the presynaptic activity. This demonstrates that random fluctuations leading
to increases of the excitatory or decreases of the inhibitory drive have the same
auto-correlation structure as each of the original presynaptic point-processes.

This notable feature relies on the thresholding properties of the postsynap-
tic neuron and can be intuitively understood as follows. Since the neuron is
close to a state of balanced excitation/inhibition, synchronous activity from a
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rather small subpopulation of neurons is sufficient to make the neuron firing.
For simplicity we assume for now that all presynaptic processes of such driving
subpopulation are identical. We know from the work of Linder [8] that the power-
spectrum of the compound process is the same as for each individual neuron,
and consequently we know that a subpopulation that is synchronous by chance
will have a cross-correlation with the same periodicity as the auto-correlation as
each of the individual neurons. Hence, a chance synchronization of a subpopu-
lation will lead to a package of postsynaptic spikes that follow on average the
same auto-structure as each individual presynaptic process. This is illustrated in
the auto-correlation function of the postsynaptic point-process shown in panel
B2 of Figure 4. Interestingly, the ISI distribution shows multiple peaks. This is
because the average postsynaptic spike rate is much lower than the compound
presynaptic activity. Hence, the postsynaptic cell does not fire at the timing cor-
responding at each peak of the auto-correlation of the presynaptic drive. Such
effect can be understood as a modulation of the firing probability of a stochastic
point-process. Therefore, the postsynaptic neurons might do cycle skipping what
induces presynaptic and postsynaptic spike-rates to be different.

6 Non-Poissonian input and structure formation in
recurrent networks

Once we have evaluated the role of non-Poissonian presynaptic input in the firing
properties of a postsynaptic neuron we are now in position to discuss the poten-
tial impact of non-Poissonian presynaptic activity on structure formation and
learning via STDP. This form of plasticity has been applied to sequence learning
and has been discussed to be involved in spontaneous and activity driven pat-
tern formation [10, 1, 4]. STDP strengthens potentially causal relations between
presynaptic drive and postsynaptic activity by increasing the synaptic strength
of all synapses that have been activated immediately before a postsynaptic spike
is generated. Since the clustering of coincidences in the presynaptic activity
has been shown to impact postsynaptic events, it is also expected to modulate
STDP-based pattern formation. Specifically, bursty presynaptic activity leads to
clusters of presynaptic coincident events on a very short timescale and just a sin-
gle postsynaptic potential can be sufficient to modulate the strength of neuronal
plasticity.

In case of regular presynaptic activity the situation is different. In case of
regular presynaptic activity the situation is different, such that regular presy-
naptic activity leads to periods postsynaptic activity with the same regularity
as the presynaptic drive. In this scenario the temporal relation of presynaptic
and postsynaptic activity needs to be maintained for a duration of the order of a
few expected interspike intervals of the presynaptic activity to exert a significant
influence. Exactly this maintenance of the temporal order between presynaptic
drive and the postsynaptic activity has been observed in our simulation of an
IF neuron subjected to structured presynaptic input. Hence, the clustering of
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Fig. 4. (A1,2) Postsynaptic spike triggered average of the presynaptic activity in units
of number of spikes per 100 µs of the whole presynaptic population of 400 excitatory
(upper trace) and 100 inhibitory (downer trace) cells. (B1,2) Auto-correlation function
of the postsynaptic spiking activity (bin-width ∆t=1 ms). (C1,2) Inter-spike interval
distribution of the postsynaptic spiking activity (bin-width ∆t=2 ms). The indices
1 and 2 in the panels distinguishes between the individual Poissonian and Gamma-
distributed presynaptic point process cases. The average postsynaptic spike rate was,
15.2 ap/s in the Poissonian case, and 3.36 ap/sec in the Gamma process. In both cases
the presynaptic spike rate of the excitatory population was 28 ap/sec per synapse. The
presynaptic spike rate of the inhibitory population was 20 ap/sec per synapse

coincident presynaptic activity, described by the Fano factor FFC , is a critical
parameter in studying the impact of different point-processes onto STDP.

7 Clustering and repetition of presynaptic synchronous
spike pattern in dependence of the Fano Factor

Given our results concerning the temporal clustering of coincidences described
by FFC we can already distinguish between two scenarios. First, let us start by
the high variance case where FFC is large, and coincidences are more clustered
than in case of Poissonian firing. This case occurs for very regular and bursty
auto-structures (see Fig. 3A), and only in the case that the rates of the all
spikes trains are identical or have a n:m relationship. In the second scenario
FFC is lower, and coincidences are less clustered than in case of Poissonian
firing. This second scenario occurs predominately for non-rational rate relations
of the processes and intermediate regularity.
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Whether sets of individual neurons are either in the low FFC , or high FFC

state, can have important implications on the neuronal dynamics and could be
used by the neural system to modulate the clustering of synchronous neuronal
activity that is occurring by chance. For example, the high FFC regime seems
to be well suited for spontaneous and activity driven structure formation due to
neuronal plasticity, like STDP [10, 1, 4, 11]. Spontaneous pattern formation re-
quires a spontaneous symmetry breaking in the activity driving the network such
that a randomly occurring pattern is strengthened and embedded as a reliable
reoccurring sequence. A regime where the frequency of coincident neuronal activ-
ity is highly clustered in time is especially suited for such a spontaneous pattern
formation since a pattern that occurs once by chance have a higher likelihood
to be repeated in a short temporal window than in case of Poissonian activity.
This repetition of individual chance patterns could boost the effect of STDP for
short periods in time since the same patterns occur more than once. However,
there is a critical period length that STDP requires to reinforce a given pattern.
If STDP requires many reoccurrences of the same pattern for reinforcement the
period length will grow larger than, first a couple of interspike intervals, and
second the auto-correlation time of the process. For periods that are long, the
advantage of the high variability regime vanishes since periods with high num-
bers of coincidences will be followed by periods with low numbers of coincidences
such that the variability of the coincide count distribution is reduced.

More relevant is the case where individual neurons have different spike rates.
In that case changing the auto-structure of the individual processes can also
regulate STDP processes. Our findings based on Gamma-processes with rates
that are not related to each other as n:m (with n,m ∈ N ) demonstrate that
Poissonian firing yields the highest FFC and therefore a higher clustering of
coincidences than regular and bursty Gamma-processes. Hence, a Poissonian
profile of spikes boost the effect of STDP compared to other statistics of spike-
trains as long as the spike rates from individual neurons are different and does
not express a n:m relationship.

8 Conclusions

We have described how auto-structure of presynaptic activity results in general
in a compound activity on non-Poissonian statistics. We have also concluded
that the driving of a postsynaptic neuron by spike-trains deviating from a Pois-
sonian profile influences the statistics of firing the postsynaptic cell in a well
defined relationship with respect to the presynaptic characteristics. Finally, and
assuming that a random pattern occurring between mutually independent pro-
cesses can be seen as a seed for the process of spontaneous pattern formation, we
have discussed how changes of the auto-structure, such as regularity of presy-
naptic spike-trains, can modulate and boost the efficiency of STDP for short
epochs of the length of a few interspike intervals. Consequently, the regularity
and burstiness of neuronal spike-train can potentially act as a gating or boost-
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ing mechanism for the ability of spontaneous symmetry breaking and pattern
formation.

Appendix

8.1 A: Gamma-process and log-normal-process

The ISI distribution for a Gamma-process with a given constant spike rate is
described by:

pγ(t) = tγ−1 (γR)γ
e−γRt

(γ − 1)!
for t > 0 . (1)

This distribution is characterized by two variables, the spike rate, R, and
the shape-parameter, γ. The Poisson-process is a special case of the Gamma-
process for which γ = 1. Values of the shape-parameter γ smaller than 1 make
short intervals more likely to occur than for a Poisson-process, and are used
to model bursty firing, while large values of the shape parameter are used to
model regular firing. We use the CV of the ISI distribution to characterize the
processes. The the shape-parameter, γ and the CV value are related as follows:

γ =
1

C2
V

. (2)

As a second kind of renewal process characterized by two variables we use the
log-normal -process.ts interspike interval distribution (p(t)log−normal) is defined
by:

p(t)log−normal =
1

k
√

2π

exp
(
− (ln(t)−a)2

2k2

)

t
. (3)

The spike rate, R, and coefficient of variation, CV , can be expressed by a
and k as follows:

a = − ln R− ln
(
C2

V + 1
)

(4)

and
k =

√
ln (C2

V + 1) . (5)

8.2 B: Coincidences

Given two parallel spike-train processes we define a coincidence based on binned
versions of the original processes. The binned spike trains are obtained by seg-
menting the time axis into exclusive bins, each of length ∆t, and counting the
number of spikes per bin k. The number of coincidences in bin k shared by two
spike trains for two simultaneous bins and of neuron 1 and neuron 2 is then
defined by Nk

c = n1
k ∗ n2

k. This definition can be trivially extended to more than
pairs.
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