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Abstract We present a non-parametric and computational-
ly efficient method named NeuroXidence that detects
coordinated firing of two or more neurons and tests whether
the observed level of coordinated firing is significantly
different from that expected by chance. The method
considers the full auto-structure of the data, including the
changes in the rate responses and the history dependencies
in the spiking activity. Also, the method accounts for trial-
by-trial variability in the dataset, such as the variability of
the rate responses and their latencies. NeuroXidence can be
applied to short data windows lasting only tens of milli-
seconds, which enables the tracking of transient neuronal
states correlated to information processing. We demon-
strate, on both simulated data and single-unit activity
recorded in cat visual cortex, that NeuroXidence discrim-
inates reliably between significant and spurious events that
occur by chance.
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1 Introduction

It is commonly held that neurons encode information by
modulations of their discharge rate. A complementary
hypothesis is that information is also encoded in the precise
relation between the discharges of spatially distributed
neurons (Hebb 1949; von der Malsburg 1981; Fetz 1997;
Singer 1999). These complementary views are addressed in
the literature as the rate coding and the temporal coding
hypotheses. Multiple methods have been developed to
detect temporal relations between spiking events and to
investigate whether these relations that are forming a spike
pattern are correlated with stimulus configurations, behav-
ior, or particular states of neuronal systems (Gerstein and
Perkel 1969, 1972; Abeles and Gerstein 1988; Gray et al.
1989; Brown et al. 1998, 2004; Grün et al. 1999, 2002a, b;
Martignon et al. 2000; Tetko and Villa 2001; Nakahara and
Amari 2002; Pipa and Grün 2003; Barbieri et al. 2004,
2005; Sharpee et al. 2004; Samonds and Bonds 2004;
Ikegaya et al. 2004; Czanner et al. 2005; Okatan et al.
2005; Kass et al. 2005; Pipa et al. 2006; Oweiss et al. 2007;
Schneider et al. 2006). The methods differ in the definitions
of the spike patterns, the techniques to detect these patterns,
and the approaches to analyze the resulting data (descrip-
tive, statistical hypothesis testing, maximum likelihood, and
Bayesian approaches). Even though the temporal coding
hypothesis formulates precisely what constitutes a spike
pattern, it turns out to be a non-trivial problem to design a
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method that detects the existence of such patterns and to
investigate their information content, without being con-
founded by other properties of the data (Oram et al. 1999;
Brody 1999; Roy et al. 2000; Baker and Gerstein 2001;
Grün et al. 2003).

In this article we present the novel method Neuro-
Xidence1 (Pipa 2003; Pipa et al. 2006) for analyzing
precise and consistent temporal relations between dis-
charges of simultaneously recorded neurons that are re-
ferred to as coordinated firing events. NeuroXidence (see
www.NeuroXidence.com) has been designed to deal with
four main properties of neuronal spike trains that make the
analysis of coordinated firing events difficult: variability,
short timescales, history dependencies and auto-structures
of the spiking activities, as well as the rareness of coor-
dinated firing events. First, neuronal recordings show a
high degree of variability, which is partially caused by
noise, changes in the properties of neuronal responses, and
by the dynamics of the information processing. Any anal-
ysis of coordinated firing events has to consider all three
kinds of variability. Second, evidence indicates that neu-
ronal states linked to the processing of information can last
for only a short period of time (e.g., a few tens of mil-
liseconds; Oram and Perrett 1992; Thorpe et al. 1996). This
implies that analysis methods need to operate on short time
series containing a very limited number of samples. Third,
neuronal activity might have strong history dependencies,
where the likelihood that a spike will occur at a certain
point in time depends on the times at which previous spikes
have occurred. Therefore, the auto-structures of the spike
trains need to be considered in the analysis of potentially
meaningful coordinated firing events. Fourth, past inves-
tigations of coordinated firing events indicated that these
events are rare (Abeles and Gerstein 1988; Ikegaya et al.
2004). Thus, analysis of coordinated firing events might be
difficult, since even highly parallel recordings from up to a
hundred simultaneous recording sites might still grossly
under-sample the neurons that participate in the actual
temporal code.

In the present article we first describe the statistical
hypothesis test and the detection algorithm used by Neuro-
Xidence. Next, we utilize simulated data to illustrate the
statistical properties, performance, and applicability of
NeuroXidence based on calibration studies for false pos-
itives and for test-power. To this end we use simulated data
with and without spike-rate modulations as well as epochs
in which spike-rate modulations coincide with epochs of
coordinated firing. We next compare the performance and
concept of NeuroXidence to related methods such as the
unitary events analysis (Grün et al. 2002a, b), the con-
ventional cross-correlation analysis (König 1994), and

maximum entropy approaches (Schneidman et al. 2006).
Finally, we apply NeuroXidence to an example dataset
consisting of 42 single units recorded simultaneously from
visual area 17 of an anesthetized cat.

2 Methods

2.1 Coordinated firing events

Coordinated spiking has been defined in at least two
different ways. The first definition is based on the
synchronous spiking of at least two neurons with millisec-
ond precision. These coordinated events have been referred
to as synchronous firings (Gray et al. 1989), temporal-
patterns (Vaadia and Abeles 1987), or joint-spike events
(Grün et al. 2002a, b). The second type of coordinated
firing is defined as two or more neurons spiking in
sequence over a finite period of time. Such a sequence
has been referred to as a spatiotemporal-pattern (Abeles and
Gerstein 1988) or, more simply, a pattern (Ikegaya et al.
2004). NeuroXidence is designed only for the analysis of
coordinated spiking of the first type.

In the present article, each incidence of a coordinated
firing event is referred to as a joint-spike event (JSE), while
the identity of a JSE is defined by the set of neurons that
exhibited the coordinated firing. This set of neurons is
referred to as a joint-spike pattern (JS-pattern). The
complexity of a JSE (Baker and Lemon 2000) is defined
by the number of neurons participating in the event. The
complexity of a JSE has to be separated from the order of
correlation (Martignon et al. 2000; Nakahara and Amari
2002; Schneidman et al. 2003). The order of correlation is
defined by the number of neurons that are directly coupled
and are the primary cause of the coordinated firing. Due to
one or more spurious or lacking events (Fig. 1(b), order 2
and (c), order 3)), the order is not necessarily the same as
the complexity, which is the total number of neurons
participating in the resulting spike pattern.

Methods that were developed to identify the complete or
partial structure of neuronal coupling (Martignon et al.
2000; Nakahara and Amari 2002; Okatan et al. 2005;
Schneidman et al. 2006) needed large datasets, in which at
least the structure of neuronal coupling had to be assumed
to be fixed. To the best of our knowledge, currently
available methods fail to extract the full coupling structures
from massive parallel recordings (activity of up to
hundreds of neurons recorded simultaneously) if the
activity involves fast changes in the properties of the
responses and a high degree of trail-by-trial variability or
the amount of data is very limited. NeuroXidence addresses
the problems of under-sampling and variability and does
not try to derive a model of the coupling structure, but1Pronunciation of NeuroXidence : NeuroKsedence.
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rather it tests whether coordinated firing is random or likely
to be induced by, as well as correlated to, information
processing or neuronal states.

2.2 Detection of joint-spike events

NeuroXidence analyzes coordinated neuronal firing utiliz-
ing a novel and computationally efficient algorithm for
identifying and counting JSEs that are based on joint-spike
activity that is not precisely synchronous. The central
feature of this method is the supposition of a timescale τc,
which defines the required temporal precision of fine
temporal cross-structure that is typically assumed to be in
the range between 1–10 ms (Markram et al. 1997; Bi and
Poo 1998; Grün et al. 1999; Hopfield and Brody 2000;
Aertsen et al. 2001; Hopfield and Brody 2001; Sjostrom
et al. 2001). NeuroXidence utilizes τc as the maximum
temporal difference between the first and the last spike of a
JSE (Fig. 1(d)).

By using τc in this way, NeuroXidence avoids the
problems of previous approaches that utilized τc for
exclusive binning (Grün et al. 2002a; Pipa and Grün
2003). Exclusive binning allows for detecting JSEs that
involve random or systematic deviations from precise
synchronization, also referred to as jitter. However, exclu-
sive binning does not consider the exact difference between
the spike times of the neurons, rather it reduces the
precision of the sampling to τc (Fig. 2(g)). This poses the
problem that spikes, which are less than τc apart and should
be considered as a JSE, can be detected as non-coincident if
they happen to fall across separate bins (Grün et al. 2002a).
For that reason, exclusive binning likely does not detect all
joint-spike events. This problem is further aggravated by
increases in either the complexity of the JSE and the bin
size τc (Grün et al. 2002a). One can overcome the problems
of exclusive binning with the multiple-shift method (Grün
et al. 1999), that shifts entire spike trains in relation to one
another, for all existing combinations of shifts. However,
this method can be used only on datasets with a small
number of neurons because the number of combinations of
shifts and the resulting computational complexity increase
exponentially with the number of neurons.

NeuroXidence is more efficient because it takes advan-
tage of the sparseness of spiking activity to reduce the
computational complexity of detecting JSEs. The algorithm
also returns an exact solution and allows for variations in
the timing of each individual spike that are less than the
defined amount of jitter, τc. This is accomplished by the use
of binning to represent the spiking data as a time-discrete
process, where the bin size, b, is considerably shorter than
τc (e.g., b <=1 ms and τc=5 ms). Thus, this method
preserves the precision of the spike times in the original
recording when detecting JSEs (Fig. 1(d)).

There are three key steps in the detection of JSEs: the
pre-processing of spike trains (see Appendix 1: Pre-
processing and Fig. 12, Appendix 1), the detection of
jittered JSEs, and the identification of JS-patterns and their
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Fig. 1 Synchronization of spikes by neuronal coupling. (a–c) Three units,
indicated by 1–3, represent either single neurons or three neuronal
populations that are mutually independent. The right sub-panel shows
the resulting spike trains. In the case that the units represent single neurons,
each spike train contains single-unit activity, while each spike train is
composed of multi-unit activity if the units represent small populations of
coupled neurons (b and c). Synchronized spikes (indicated by red color)
are referred to as joint-spike events (JSE ), and their complexities are
indicated on top of the spike trains. (a) Since the units are not coupled, they
are mutually independent and exhibit spike trains that do not share
synchronized spikes beyond chance level (indicated by dashed red color).
(b) A second-order coupling between units 1 and 2 results in a JSE of
complexity 2 (indicated by solid red color) and one spurious JSE of
complexity 3 (indicated by dashed red color). (c) A third-order coupling
between units 1, 2, and 3. (d) A schematic of the definition of a JSE. Spikes
that belong to a JSE share overlapping regions of the maximally allowed
jitter, τc. Regions of allowed jitter represent either a maximally allowed
offset, a maximal random jitter, or both together. (e) and (f ) Two different
ways of jittering spikes. (e) In NeuroXidence, each complete spike train is
jittered on a timescale given by τr. This jittering destroys coordinated
spiking on all shorter timescales, while preserving the auto-structure of
each spike train on all timescales. (f ) Each spike of each spike train is
jittered individually. Therefore, the auto-structure, as well as the cross-
structure, is modified
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complexity. The pre-processing step ensures that the
minimal inter-spike interval of any unit is larger than τc,
corresponding to the kernel G+/− defined in units of the bin
size, b. This step prevents temporally overlapping JSEs,
while preserving each individual JSE and its exact frequency
of occurrence. In the second step, NeuroXidence detects
jittered JSEs by extending the temporal extent of each
individual spike to the number of bins defined by G+/−. For

that purpose, each spike and its neighborhood are replaced
by a kernel, which contains G+/− bins of ones (Fig. 2(a–c)).
The third step in JSE detection consists of identifying
JS-patterns and determining their complexity. This is
accomplished by evaluating the local complexity (i.e. the
number of synchronous spikes) per time bin (Fig. 2(d)). Each
local maximum of the local complexity corresponds to one
instance of joint-spiking (Fig. 2(e)). Thus, zones of
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maximal local complexity are used to derive the
corresponding JSE within an identified zone of joint-spiking
(Fig. 2(f )).

The determination of the total frequency of occurrences
of one particular JS-pattern in the dataset involves the sum
of two pattern frequencies. One is the frequency of JSEs
that are identical to the JS-pattern of interest. The other is
the frequency of all supra-patterns in which the JS-pattern
is included as a sub-pattern.

2.3 Definition of the hypothesis test

To test whether JSEs of one type of JS-pattern occurs more
or less often than expected by chance, a statistical hypothesis
test is used. The null hypothesis (H0) states that JS-patterns
occur by chance. Therefore, H0 assumes that the precise
timing of neuronal firing, on a timescale that is defined by
the precision of JS-pattern τc, is mutually independent
across neurons (Fig. 1(a)). The alternative hypothesis (H1)
assumes that there are more (or less) coordinated firing
events than expected by chance and thus, that the spiking
events are dependent. Consequently, the observed frequen-
cy of JSEs has to be compared to the expected frequency of
JSEs in the case where the neurons are assumed to be
independent. Therefore, the core of the statistical hypoth-
esis test is the estimate of the expected frequency of JSEs.

This estimation can be based on either a parametric or a
non-parametric approach. Parametric approaches hypothe-
size an explicit model of the data, while non-parametric
methods do not pose such assumptions. Since, violations of
the assumptions of the model often lead to false rejection of
H0, a non-parametric method might provide considerable
advantages in detecting JSEs. An example of a parametric
method that has been discussed as yielding increased false
positive levels is the unitary events analysis (Grün et al.
2002a, b), which hypothesizes that spike trains are sta-
tionary Bernoulli processes. Such a process is binary and
discrete, with constant probability of spike generation
across time as well as with no history dependency.
Therefore, several factors might induce false positives: (1)
low firing rates (Roy et al. 2000), (2) fast rate modulations
(Grün et al. 2002b), (3) auto-structure in the spike trains
(Baker and Lemon 2000; Pipa et al., submitted), and (4)
trial-by-trail variability in firing rates and in latencies of
responses (Brody 1999; Baker and Gerstein 2001; Grün
et al. 2003).

2.4 Generation of surrogate data

The non-parametric approach of NeuroXidence estimates
the chance frequency of JSEs (H0) based on a surrogate
dataset, a technique that has been widely used (Schreiber
and Schmitz 2000; Baker and Gerstein 2001). The art

of developing a non-parametric method is to produce
surrogate data that differs from the original dataset in only
one property. This property defines the alternative hypoth-
esis, H1. Hence, the ideal surrogate dataset is derived from
the original dataset, such that it maintains all of the original
properties of the data but does not contain any coordinated
firing. The surrogate dataset should preserve the auto-
structure of each individual spike train, trial-by-trial
variability, rate modulations, and all history dependencies.

NeuroXidence generates surrogate data by discriminat-
ing two disparate timescales. The first timescale, τc, has
been already described and corresponds to fine temporal
cross-structures of interest for JSEs. This range is typically
between 1–10 ms (Markram et al. 1997; Bi and Poo 1998;
Grün et al. 1999; Hopfield and Brody 2000; Aertsen et al.
2001; Hopfield and Brody 2001; Sjostrom et al. 2001). The
second timescale, τr, corresponds to the scale of the rate
coding and is defined to be distinguishably slower than τc;
therefore, a factor, η, is introduced, which is the ratio
between the two timescales:

tr ¼ h � tc; with h > 1: ð1Þ
In the present analyses, η is chosen to be in the range of
2–5, meaning that τr is two to five times slower than τc. As
we will show, this difference in timescales is sufficient to
test reliably for the presence of fine temporal cross-structure
defined by JSEs, even in data in which the auto-structure of
the spike trains changes on the timescale of τc.

The surrogate dataset is derived from the original spike
trains by jittering spikes by an amount given by the slow
timescale, τr (Fig. 1(e and f )). In contrast to random
jittering, also referred to as ‘dithering,’ of each individual
spike (Fig. 1(f )), which destroys the fine temporal auto-
structure, NeuroXidence jitters each spike of the same spike
train by the same amount (Fig. 1(e)). Thus, the jittering is
equivalent to random shifts of an entire spike train, which
destroys fine temporal cross-structure on timescales faster
than τr , but preserves auto-structures on all timescales.
Hence, random shifting of entire spike trains is an optimal
strategy to produce surrogate data, and it minimizes the
chances of generating inappropriate surrogates.

2.5 Implementation of the statistical test

To assess a deficiency or an excess in the frequency of
JSEs within a particular JS-pattern, we compare the fre-
quency of their occurrence in the original dataset (org) to
their frequency in the surrogate dataset (sur). For a par-
ticular JS-pattern, k, and trial, t, we compute the difference,
Δft

k, between the two frequencies:

Δf kt ¼ f kt orgð Þ � f kt surð Þ; ð2Þ
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where ft
k(org)∈N 0, for trial t=1...T and JS-pattern k=1...K.

Thus, the variability of Δft
k is assessed on a trial-by-trial

basis.
To improve the estimate of the chance frequency of JSEs

occurring in surrogate data (H0), NeuroXidence allows the
use of multiple surrogates (S). Each surrogate sample is
based on random and independent shifts to derive the
average chance frequency of JSEs per trial. Thus, for S>1,
the difference Δft

k becomes the average difference between
the original data and the S surrogates Δf kt :

Δf kt ¼ 1

S

XS

s¼1
Δf kt;s ¼ f kt orgð Þ � 1

S

XS

s¼1
f kt;s surð Þ

with Δf kt 2 Q ^ f kt orgð Þ 2 N 0 ð3Þ

A value of Δf kt larger than zero indicates an excess of JSEs
within one particular JS-pattern, k, in the original dataset.
Similarly, a negative value of Δf kt indicates a deficiency of
JSEs in the original dataset. The differences Δf kt for one
particular JS-pattern k computed for all available trials form
the set ΔFk :

ΔFk ¼ Δf k1 ;Δf k2 ; . . . ;Δf kT
� �

: ð4Þ

NeuroXidence uses the set ΔFk to test whether the excess
or deficiency of JSEs is significant and consistent across
trials.

2.6 Rare events versus significant events

The estimation of the statistical significance utilized by
NeuroXidence is derived from the trial-based evaluation of
Δf kt 6¼ 0. Therefore, NeuroXidence requires that a signif-
icant increase or decrease of the frequency of JSEs has to
be statistically consistent across trials. This dissociates
NeuroXidence from other methods that consider only the
total number of JSEs across trials and do not take trial-by-
trial variability into consideration (Abeles and Gerstein
1988; Grün et al. 1999, 2002a, b; Ikegaya et al. 2004). To
test if Δ f kt is a significant increase or decrease of the
frequency of JSEs, NeuroXidence allows testing whether
either the mean (t test) or median (Wilcoxon rank test) of
Δ f kt is different from zero. The Wilcoxon test is, in many
cases, a much better choice, especially when spike rates are
low and complexities of JSEs are greater than two (see
Appendix 2).

2.7 Parameters of the NeuroXidence significance estimation

We next investigate the properties of the parameters η and S
utilized by NeuroXidence to estimate the statistical signif-
icance of JSEs. To this end, we discuss how both affect the
false-positive rate and test-power of the method.

The scaling factor η As mentioned, NeuroXidence differ-
entiates between two timescales at which neural processes
operate. The first, τc, defines the timescale of JSEs. The
second timescale, τr, is slower and is relevant for the other
processes considered by the significance evaluation. The
ratio between the two timescales is given by η=τr/τc
(Eq. (1)). The selection of η is based on a trade-off between
the information maintained in the surrogate data and the
information destroyed by jittering the spike trains. On the
one hand, τr should be as fast as possible to account for
rapid changes in the cross-structure, such as co-variations in
firing rates (Brody 1999; Baker and Gerstein 2001). On the
other hand, a large value of τr (i.e. large η) ensures that
jittering destroys most of the coordinated firing in the
surrogate data, which is necessary for a high test-power
(probability to reject H0 if H1 is true). The probability that
jittering destroys JSEs increases exponentially with the
complexity of JSEs, since the number of existing, different
jitter configurations is exponentially growing with the
complexity of the JS-pattern (see Electronic Supplementary
Fig. 2A). Therefore, large η improves mainly the test-power
for JS-patterns, whose complexities do not exceed two or
three. In conclusion, η should be chosen to be in the range
of 2–5, which provides a good balance between the test-
power and the dynamics of the cross-structure.

Number of surrogates S As mentioned, Using S>1 random
surrogates per trial improves the estimation of the frequency,
ft
k(sur), of JSEs by using the average frequency, f

k
t surð Þ, for

each particular JS-pattern, k. This improves the estimate of
the expected number of JSEs under H0 and increases the
reliability of the estimated p value. To understand how
multiple surrogates influence the significance estimation in
detail, we next derive the impact of S>1 on the probability
distribution of the average difference, Δf ¼ forg � f sur,
between the frequency of JSEs in the original dataset, forg,
and the average frequency in the surrogate dataset, f sur. The
distribution of the average difference, Δf , is given by a
convolution of the distributions p f sur

and pforg :

pΔf fð Þ ¼
Z

df ' p f sur
f 'ð Þ pforg f þ f 'ð Þ: ð5Þ

Since pforg is not affected by different numbers of
surrogates, we focus solely on changes of p f sur

and assume
that events are rare such that the distribution of p f sur

is
expected to be skewed, with a median smaller than the
mean. However, with increasing numbers of surrogates, the
distribution of the average frequency, f sur, becomes more
normally distributed than fsur because of the central limit
theorem. Therefore, the median of the distribution p f sur
becomes larger with increasing S and approaches the value
of the mean.

J Comput Neurosci



To illustrate the impact of this mapping on the sig-
nificance estimation, we assume the null hypothesis, H0,
and define that both f sur and forg are sampled from the same
distribution H0 : pfsur � pforg

� �
. In this case, the median and

the mean of pfsur and pforg are, by definition, identical.
However, as described above, multiple surrogates, first,
make the distribution p f sur

more normal than pforg and,

second, make the median of p f sur
larger than the median of

pforg . Hence, it follows that in the case of H0, multiple
surrogates, i.e., S>1, bias the median of Δf (see Eq. (5))
towards negative values (see Electronic Supplementary Fig.
1A). This makes the reliance of NeuroXidence on a median
test more conservative when testing for an excess of JSEs
and more liberal when testing for a deficiency of JSEs (i.e.
increased numbers of false-positive events). Therefore, it is
recommended that one use larger values of S only for testing
for an excess of JSEs, while one needs to be cautious when
testing for a deficiency of JSEs. In the latter case, S=1 is a
more proper choice to minimize the risk of type-1 errors.

2.8 False-positive rates

False-positive events are defined as false rejections of the
null hypothesis (H0). If a statistical hypothesis test is
applied to a recording of large sets of neurons, one has to
differentiate between two different scenarios leading to
different definitions of false error rates.

Scenario one The test is applied to only one JS-pattern of
interest. In this case, the rate of false positives is defined by
the percentage of p values lower than the test-level (e.g.,
p<0.05). This percentage of false positives is referred to as
the individual-false-positive-rate, since it is defined for a
single JS-pattern. The inclusion of more than one JS-pattern
requires a multiple-comparison correction (e.g. Bonferroni).

Scenario two The test is applied only to those JS-patterns
that have occurred in the dataset at least once. In this case,
the grand-average false error rate is referred to as the
actual-false-positive-rate. A test that ensures a conservative
actual-false-positive-rate has to ensure that the average
false-positive-rates of all occurring JS-patterns are below
the test-level. This implies that the statistical significance
must be independent of the occurrence of the JS-patterns,
which is achieved by evaluating the significance on the
basis of multiple trials. The consideration of the trial-by-
trial variability of the frequencies of occurrences prevents
JS-patterns, which are by chance occurring in a few or even
only one trial, from being considered to be significant.
Thus, significant JS-patterns are required to occur reliably
across trials.

In the context of simultaneous recordings of large sets of
neurons, only scenario two is of practical usage, since, for
scenario one, a multiple-comparison correction has to be
performed (e.g. Bonferroni). The latter corrects the test-
level for the number of JS-patterns that were tested (K ).
Since the number of JS-patterns can be very large, the
Bonferroni correction can lead to a corrected test-level that
is extremely small (e.g. for 20 neurons K>106, and a 1%
level leads to a corrected level of <10−6), reducing thus
considerably the statistical power.

3 Results

In the following sections we report the statistical and
computational properties of NeuroXidence. To this end we
utilize simulated data as well as an example dataset
consisting of 42 single units simultaneously recorded from
cat visual area 17 of an anaesthetized cat.

3.1 False positives for stationary processes

Simulated data, generated by independent and stationary
Poisson processes, were used to assess the individual-false-
positive-rate of NeuroXidence for one individual JS-pattern
of interest (Fig. 3). The individual-false-positive-rate for
each individual JSE was derived from 100 independent
hypothesis tests, based on independent realizations of the
same simulated-data model. The standard set of parameters
used to generate the simulated data was defined by 50 trials
(T ), a mean spike rate of 15 ap/s (r), 20 surrogates samples
(S ), and η equal to 3. From this standard set, 15 different
combinations of parameters were derived by varying the
number of trials (T=20, 50, 100, 200), the number of
surrogates (S=1, 50, 250), the mean spiking rate (r=7, 10,
30, 60, 90 ap/s), and the scaling factor (η=2, 5, 7).
NeuroXidence was applied to each simulated dataset using
a sliding window with durations of l=200, 400, and 800 ms.
In total, 48 different simulated-data models were used to
derive the individual-false-positive-rate for 4 JS-patterns of
complexities 2–5. None of the individual-false-positive-
rates for any of the parameter sets was above chance-level,
for either test-level of 5 or 1% (Fig. 3), demonstrating that
NeuroXidence is a conservative statistical hypothesis test.
Furthermore, NeuroXidence becomes more conservative
with increasing complexity.

3.2 Test-power for stationary processes

Test-power for individual JS-patterns was derived from cor-
related Poisson processes, generated by a single-interaction
process (Kuhn et al. 2003). Thus, correlated spike trains
were characterized by a background rate, corresponding to
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the independent spiking of neurons, and by a JSE rate,
defining the expected frequency of the JS-pattern of interest
beyond chance-level. Sixteen simulated datasets were used
to study how the test-power of NeuroXidence is influenced
by the length of the sliding window, the number of trials, the
background spike rate, and the number of surrogates (Fig. 4).
Dataset 1 contained 50 trials, each 800 ms long, the back-
ground spike rate was 15 ap/s, the maximum allowed jitter
was 5 ms, and η was 3. Each of the remaining 15 sets was
derived from the first set by variations of either the sliding
window length (l=200, 400, 800 ms, Fig. 4(a, rows 1–4)),
the number of trials (T=20, 50, 100, 200, Fig. 4(b, rows 1–4)),
the background spike rate (r=10, 15, 30, 60, 90 ap/s,
Fig. 4(c, rows 1–4)), or the number of surrogate datasets
(S=1, 20, 50, 250, Fig. 4(d, rows 1–4)).

Based on these 16 simulated datasets, the test-power was
derived for four JS-patterns of complexity 2–5. The test-
level used by NeuroXidence was 1%. Increasing the length
of the analysis window, as well as increasing the number of
trials, led to increased test-power. Given the same frequen-
cy of excess JSEs, the test-power tended to increase along
with JSE complexities. This was expected since the
probability of a chance occurrence of a JSE exponen-
tially decreased with its complexity. The number of
surrogates used for the estimation of the average frequency
Δf kt changed the test-power only very subtly in compari-
son to the changes observed when varying the window
length, the number of trials, and the spike rate. In particular,
the differences in test-power for S>20 were negligible,
indicating that going beyond 20 surrogates does not
substantially improve the reliability of the estimates
(Fig. 4(d, rows 1–4)).

3.3 Sub-patterns and supra-patterns of induced JS-patterns

To study the test-power of sub-patterns and supra-patterns
of individual JS-patterns induced by a single-interaction
process (Fig. 5), we performed a statistical evaluation of the
frequency of occurrence of any potentially existing JS-
patterns in 4 simulated datasets. Each dataset comprised 50
trials of 16 simultaneous spike trains. The 4 simulated
datasets differed in the complexities (2–5) of the mother-
patterns, which are the JS-patterns induced by the single-
interaction process (mother-process; Fig. 5).

Any JS-pattern of complexity higher than 2 includes
sub-patterns that are expected to be detected at least as
frequently as the mother-pattern. On the other hand, the
test-power of each of these sub-patterns is expected to be
lower than the test-power of the mother-pattern, since the
lower complexity leads to a higher chance frequency under
H0. Thus, when sub-patterns are only induced by a single
mother-process and not by additional correlations with
orders equal to or smaller than the complexity of the sub-
patterns, the test-power is expected to decrease with the
decreasing complexity of the sub-pattern.

Supra-patterns are composed of the mother-pattern itself
and spikes from additional neurons, which by chance
coincide with the mother-pattern. Therefore, supra-patterns
are of higher complexity than the induced mother-pattern.
The maximal frequency of a supra-pattern is bound by the
maximal frequency of any sub-pattern, including the
induced mother-pattern. Furthermore, since the additional
spikes are coinciding by chance, the frequency of the supra-
pattern occurring is expected to be smaller than that for the
mother-pattern. Thus, as long the excess frequency of the
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Fig. 3 Percentile plots of the percentage of false-positives estimates
by NeuroXidence used to detect joint-spike patterns of complexities 2
to 5. Independent and homogenous Poisson processes were used to
generate simulated data that were analyzed by NeuroXidence to
estimate the false-positive rate based on 100 independent realizations
of each simulated-data model. Each individual percentile plot
represents 48 parameter sets describing, three window lengths

(1=200 ms, 400 ms, 800 ms) and 16 simulated-data models, which
differed, compared to the standard-data model (50 trials, spike-rate
15 ap/s, 20 surrogates, and η=3), by variation of the mean spike rate
(r=7, 10, 30, 60, 90 ap/s), the number of trials (T=20, 50, 100, 200),
the number of surrogates (S=1, 50, 250), and η=2, 5, 7. The
percentage of false-positives for a test-level of 5% (a) and for a test-
level of 1% (b)
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mother-pattern is not so high that the supra-pattern still
occurs reliably across trials, the test-power of the supra-
pattern is expected to be substantially reduced in relation to
the mother-pattern.

3.4 False positives and test-power
for a non-stationary process

Using data generated by a non-stationary process, we
derived the percentage of false positives and the test-power
of NeuroXidence (Fig. 6(c and d)) and compared the results
with the widely used shuffle-corrected cross-correlogram

(Fig. 7(a)) and the UE-method (Fig. 7(b–d), Appendix 3).
The simulated data comprised 18 simultaneous units and 50
trials, which were based on 15 periods, each 2 s long. The
simulated dataset also contained features that are frequently
observed in real datasets (Fig. 6(a and b)), such as low rates
(periods 5, 6), rate modulation (periods 7–12), latency co-
variation of rate responses across neurons (periods 10, 12),
bursty (period 2,3) and regular spiking (period 4) modeled
by a γ-process with three different shape factors, and trial-
by-trial variability of rate levels (period 13). Only periods
14 and 15 contained JSEs above chance-level, which were
based on correlations modeled by a multiple-interaction
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Fig. 4 Test-power of NeuroXidence in relation to the window length
(l ), number of trials (T ), spike rate (r), and number of surrogates (S).
Subfigures plot the test-power of NeuroXidence as a function of the
frequency of joint-spike events (JSEs) beyond chance level. Spike
trains were analyzed by NeuroXidence and modeled as a single-
interaction process based on Poisson processes. Rows 1–4 show the

test-power dependencies on the complexities of the analyzed joint-
spike pattern ranging from 2 to 5. (a–d) Variations in (a), the length
of the analysis window l; (b), the number of trials T ; (c), the spike rate
r; and (d), the number of surrogates S from the standard parameter set
(T=50, r=15 ap/s, S=20, η=3) are presented

J Comput Neurosci



process (Kuhn et al. 2003). NeuroXidence was applied to
the data in a sliding window of length 800 ms, and
significance tests were performed on excesses of JSEs with
complexities 2–6. The statistical significance was evaluated
for each occurring JS-pattern. We derived the percentage of
JS-patterns that occurred significantly more frequently than
expected by chance (Fig. 6(d)). To make comparisons
across complexities, the number of significant JS-patterns
per complexity was normalized by the total number of
identified JS-patterns for that complexity level (Fig. 6(c)).

Spike trains during periods 1–13 were independent,
which implied that H0 should not be rejected more often
than the test-level (5%), if the actual-false-positive-rate were
conservative. The percentage of false rejections is clearly
below 5% for all complexities and throughout all sliding

windows during periods 1–13. Therefore, NeuroXidence
is a hypothesis test with a conservative actual-false-positive-
rate that is effected neither by low rates, rate modulation,
latency variability, and cross-trial rate changes nor by the
different model processes (γ-process, Poisson) used to
generate the spike train. High test-power during periods 14
and 15, which were characterized by increased frequencies
of JSEs based on multiple-interaction process correlations
with ζ=0.12 (period 14) and ζ=0.3 (period 15), demon-
strates the applicability of NeuroXidence for the detection
of excesses of JSEs.

Unlike NeuroXidence, the shuffle-corrected cross-corre-
logram (bin width=20 ms, data segments=800 ms) indicated
the existence of cross-structure due to its modulation in
periods 10 and 12 (Fig. 7(a)). The reasons for these modu-
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Fig. 5 Test-power of NeuroXidence for an induced mother-pattern
and its supra-patterns and sub-patterns. Each subfigure shows the
gray-coded test-power of a certain mother-pattern, all sub-patterns of
lower complexities, and all supra-patterns of higher complexities. The
excess rate of the JSEs beyond the chance-level, which corresponds to
the mother-pattern, is given on the x-axis. In row 1 the mother-pattern
was of complexity 2, in row 2 of complexity 3, in row 3 of complexity

4, and in row 4 of complexity 5. The data used to derive the test-
power consisted of 50 trials of 16 spike trains, modeled as a single-
interaction process that is based on homogeneous Poisson processes.
A spike rate r=15 ap/s, S=20 surrogates, and η=3 were used by
NeuroXidence for deriving the statistical significance. (a–c) Variations
in the length of the analysis window l. l=200 ms (a), l=400 ms (b),
l=800 ms (c) are presented
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lations are the shuffle-correction and latency co-variations
across neurons that characterize periods 10 and 12 (Brody
1999; Baker and Gerstein 2001). This indicates that
modulation in the shuffle-corrected cross-correlogram does
not necessarily indicate an excess of fine temporal cross-
structure.

We also applied the UE-method (see Appendix 3) to the
same dataset (Fig. 7(b–d)). Since the method assumes that
data in every sliding window can be described by a stationary
Bernoulli processes, the sliding window was chosen to be
rather short (100 ms) compared to the 800 ms-long Neuro-

Xidence window. This window length of 100 ms justifies the
assumption of a stationary Bernoulli process for a slower
modulation of the rate profiles. Therefore, 100 ms is a good
trade-off between the danger of false-positive events induced
by non-stationarity and the reduced test-power due to the
small amount of data contained in each window.

For the UE-method, we derived the actual-false-positive-
rate per JS-pattern complexity, which ranged from 2–6
during periods 1–13. As with NeuroXidence, the actual-
false-positive-rate was defined as the rate of false rejections
of H0, normalized by the number of occurred JS-patterns.
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Fig. 6 Statistical significance of an excess of JSEs evaluated by
NeuroXidence. Generated simulated data consisted of 50 trials of 18
‘simultaneous’ spike trains. (a) The simulated data contained 15
periods each 2 s long. Each period was described by one set of features
used to describe the simulated-data model and to generate the spike
trains. An inhomogeneous and independent Poisson process served as
a standard model. Four additional features were used as modifications
of this standard model. Only periods 14 and 15, indicated by feature a
spike trains, were inter-correlated and thus exhibited a statistical excess
of JSEs (multiple-interaction process, two groups each with nine neurons
are correlated, period 14 correlation ζ=0.12, period 15 ζ=0.3). Feature
b, which was used for period 13, indicates changing rates across trials
and across neurons. Neurons 1–9 were modeled by a homogenous
Poisson process with a rate=15 ap/s, while the rate of neurons 10–18
changed from trial to trial between 15–30 ap/s. Feature c (periods 10,
12) represents latency covariations. From trial to trial, the latency for all

18 neurons varied randomly by the same amount between 0–100 ms.
During the periods characterized by feature d, inhomogeneous gamma
processes (shape factor γ=7 (regular) for periods 4, 6, and 9, γ=0.7
(bursty) for period 2, and γ=0.3 (bursty) for period 3) were used instead
of inhomogeneous Poisson processes. (b) PSTH displays of the rate
profiles of the used inhomogeneous processes. During period 7, rate had
been modulated between 5 and 50 ap/s with a Gaussian shape with σt=
250 ms, while during periods 8, 9, and 10, σt=50 ms. The rates in
periods 11 and 12 were modulated between 5 and 30 ap/s by a step
function. (c) The number of individual and unique JS-patterns of
complexities 2–6 that were detected in each sliding window (τc=5 ms,
‘SW’=sliding window, 800 ms). (d) The percentage of JS-patterns that
could not be explained by chance (test-level 5%). In the case of
independent processes (periods 1–13), this percentage corresponds to the
percentage of false positives, while it corresponds to the test power
during periods 14 and 15
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As expected, fast changing rates were nearly fully
compensated by the short sliding window (100 ms) for
complexity 2 JSEs (Fig. 7(b)), while high-complexity JS-
patterns led to an increased actual-false-positive-rate during
periods with fast changing rates (periods 7–12; Fig. 7(d)).
The second source for increased actual-false-positive-rates
was low spike rates. During periods 5 and 6 and all parts of
other periods in which the rate was low (5 ap/s), the actual-
false-positive-rate increased dramatically for complexity
2 JS-patterns and up to 100% for complexity 3 patterns
(Fig. 7(c)). In contrast, the actual-false-positive-rate for
complexity 6 JSEs was close to zero because their existence
was not detected due to the usage of exclusive binning. The
reason for the dramatic increase in the actual-false-positive-
rate is that the UE-method does not consider any trial-based
variation in the frequency of occurrences. Instead, it tests if
the total number of a particular JSE across all trials is
significantly different from the expected total number,
which is based on the assumption that the expected number
is Poisson distributed. Since the significance estimation of
the UE-method is only based on the variability of the
expected total number and not on the variability of
frequency of occurrences across trials, a few or even only

one JSE might be evaluated as a significant excess if the
expected total number is low enough. The latter is the case
if spike rates are low or the complexity is large.

3.5 Test-power and false-positives rate changes
co-occurring with JS activity

To demonstrate that NeuroXidence detects epochs contain-
ing coordinated firing, even in the presence of rate
modulation of the same neurons that are firing synchronous-
ly, we generated simulated data that contained rate modu-
lations (Fig. 8(b)) as well as short epochs of coordinated
firing (Fig. 8(a)). The simulated data was comprised of
four periods. Periods 1–3 contained rate modulation
modeled by the same Gaussian waveform (σt=200 ms,
peak rate 70 ap/s), while period 4 contained a rate
modulation with a steeper rising than falling slope (com-
posed with two Gaussian waveforms, rising σt=100 ms and
falling σt=300 ms, peak rate 70 ap/s). In addition, periods
2, 3, and 4 contained short epochs (Fig. 8(a)) with
coordinated firing modeled by an MIP process (Kuhn
et al. 2003). NeuroXidence was applied to the data with a
sliding-window length of 100 ms. We evaluated the
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method for detecting statistical excesses of joint-spike events. The
comparison was based on the same simulated dataset as in Fig. 6. (a)
Cross-correlograms for the respective periods (the scale bar in period
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explained by chance (5%) [(b): complexity=2, (c) complexity=3,
(d) complexity=6]. In the case of independent processes (periods
1–13), this percentage corresponds to the percentage of false
positives, while it corresponds to the test-power during periods 14
and 15 (binning=5 ms, ‘SW’=sliding window with length 100 ms)

J Comput Neurosci



statistical significance for each occurring JS-pattern with
complexities 2–6, derived the frequency of significant JS-
patterns (Fig. 8(c)), and computed the percentage of
significant JS-patterns per complexity (Fig. 8(d)). During
periods with rate modulation, but lacking fine temporal
structure, the percentage of false rejections of H0 was
below the test level of 5% for all complexities. In contrast,
periods that contained coordinated firing lead to an
increased frequency of significant JS-patterns (Fig. 8(d)).
However, in the case of an MIP process, since the rate of
JSEs increases for an increasing spike rate, the test power
itself was also modulated. Hence, the precise relation of the
test-power and spike rate depends on the chosen model of

coordinated firing. Irrespective of this precise relation, the
simulated data demonstrates that NeuroXidence is capable
of detecting periods of coordinated firing even in the
presence of rate modulation of the same neurons that are
firing synchronously.

3.6 Test-power of NeuroXidence for oscillatory processes

Since oscillatory modulations of the spike rate are fre-
quently observed in experimental data (Gray et al. 1989;
Fries et al. 1997, 2001a, b, 2002; Rodriguez et al. 1999;
Tallon-Baudry et al. 1999, 2004; Lachaux et al. 2000), we
studied if such modulations lead to rejections of H0 and to
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Fig. 8 Statistical significance of an excess of JSEs evaluated by
NeuroXidence. Generated simulated data consisted of 50 trials of ten
‘simultaneous’ spike trains. (a) The simulated data contained four
periods each 1.5 s long. Inhomogeneous and independent Poisson
processes with a spike rate of 5 ap/s served as a standard model.
During periods 1, 2, and 3 the spike rates of all ten neurons changed
following a Gaussian modulation (peak rate=70 ap/s, σt=200 ms).
Rate modulation in period 4 was skewed since its first half was
composed of a Gaussian modulated with σt=100 ms and its second
half with σt=300 ms. Gray-shaded windows at the beginning of
period 2 (window length=0.75 s from 1.7–2.45 s), during the rising
slope of period 3 (window length=0.1 s from 3.75–3.85 s), and for the

whole of period 4 (window length=1.5 s from 4.7–6.2 s) were inter-
correlated and thus exhibited a statistical excess of JSEs (multiple-
interaction process, ζ=0.2). (b) PSTH displays the rate profiles of the
used inhomogeneous processes. (c) The number of individual and
unique JS-patterns of complexities 2–6 that were detected in each
sliding window (τc=5 ms, ‘SW’=sliding window: 100 ms, η=3). (d)
The percentage of JS-patterns of complexities 2–6 that could not be
explained by chance (test-level 5%). In the case of independent
processes, this percentage corresponds to the percentage of false
positives, while it corresponds to the test-power during periods based
on correlated multiple-interaction processes
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support of H1. To this end we assumed as a model a
continuous instantaneous-rate function, ri(t), that is coher-
ently-modulated across neurons by a sinusoidal oscillation
with frequency v:

ri tð Þ ¼ A

2
� 1þ sin ntð Þ½ � with i ¼ 1 . . . N ð6Þ

We used the instantaneous rate function (A=10 ap/s) to
model spike trains by inhomogeneous Poisson processes
and estimated numerically the test-power of complexity 2
JS-patterns. NeuroXidence, based on 50 trials of 800 ms-
long analysis windows, was applied to 100 independent
realizations of the data. The oscillation frequency ranged
between 1 and 80 Hz, while the jitter-kernel width was kept
fixed [τr=21 ms in Fig. 9(a) and τr=11 ms in Fig. 9(b)]. For
oscillation frequencies below 6 Hz in the case of τr=21 ms
and 9 Hz for τr=11 ms, the percentage of significant events
stayed below the test-level of 5%. With increasing
oscillation frequencies, the test-power increased and
reached up to 100% at 50 Hz for τr=21 ms and at 80 Hz
for τr=11 ms.

In addition to this numerical estimation of the Neuro-
Xidence test-power, we used an analytical description of
the expected difference, Δf, between the frequency of JSEs
in the original, f (org), and the jittered, f (sur), datasets to
approximate the theoretically predicted test-power A′(v)c

(see Appendix 4). The agreement between the theoretical

prediction of the test-power, in percent given by 100 A′(v)c,
and the numerical estimation based on simulated data, both
for c=2, indicates that the modulation of the test-power is
well described by the analytical solution (Fig. 9). Therefore,
A′(v)c can be used to discuss the impact of coherent
oscillations on the probability of rejecting H0.

3.7 Application to real data

We applied NeuroXidence to neuronal activity of 48 single
units recorded in area 17 of an anesthetized cat in response
to a drifting sinusoidal grating. Gratings were presented for
3.5 s and 20 trials with movement in directions of 30° and
120°. The direction of 30° was the optimal direction for
eliciting strong responses in most of the cells, while 120°
was chosen to be perpendicular (see Appendix 5 for details
on experimental methods).

We computed cross-correlation histograms (König 1994)
for all pairs of neurons for the period during which neurons
showed sustained responses to the presented stimuli. After
the subtraction of shift-predictors (König 1994), cross-
correlograms indicated that a number of spikes were
synchronized with a precision of several milliseconds
(Fig. 10), raising two questions: first, whether higher
complexity JSEs might exist in this dataset, and second,
whether JSEs are direction specific.

The NeuroXidence algorithm was applied to each set of
trials for both stimulus conditions and the entire duration of
the recording, which also included the 1 s pre-stimulus
period and the 1 s of post-stimulus activity (Fig. 11). The
average computation time per sliding window amounted to
35 min on a 1.4 GHz CPU with 1 GB RAM. We
investigated JSEs of complexities 2–48 and used 1% as a
test-level (τc=5 ms, τr=20 ms, S=50, bin size=1 ms,
Wilcoxon test). Up to 14,769 different and individual JS-
patterns per sliding window (length 200 ms, window shift
100 ms) were detected (Fig. 11(a, 2 and b, 2)). JS-patterns
occurred significantly more often than expected by chance
only during the period of stimulation, and their complex-
ities ranged between 2 and 8. No significant patterns were
found of complexity 9 or higher (Fig. 11(a, 3 and b, 3)).

Interestingly, the time-course of the significant JS-
patterns partially followed the temporal rhythm of the
stimulation. The number of patterns recurred with a period
of 820 ms, which corresponded with the timing of the
stripes of the grating crossing the receptive fields (Fig. 11(a,
2 and 3, b, 2 and 3), compare to PSTHs in Electronic
Supplementary Fig. 3). Also remarkable is the steep
increase and decrease at the beginning and end of the
period of stimulation. Notably, both the number of JS-
patterns as well as the number of significant JS-patterns
indicate stimulus specificity of joint-spike activity. This
confirms previous findings restricted to pairwise analysis
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Fig. 9 Test-power of NeuroXidence based on data modeled as
independent and inhomogenous Poisson processes. The instantaneous
rate functions were modulated by a sinusoid with frequency v and a
peak rate of 20 ap/s. Twenty surrogates and 21 ms of jitter were used
in (a), while in (b) 11 ms of jitter were used for deriving statistical
significance. The black solid curve (asterisk) shows the mean test-
power (dashed black: confidence interval of 1σ) based on 100
independent realization of the same data model, while the other curve
(open circle) shows the theoretical prediction given by A′(v)c
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(Samonds et al. 2003). To express this in numbers, we
averaged the number of patterns per complexity between
0.1 and 3.5 s after stimulus onset for each condition. Then,
we computed the difference, for each individual complex-
ity, between the mean across times for both movement
directions and normalized the difference to the average for
movement at 30°. The mean number of JS-patterns for 30°

movement exceeds that for 120° by an average of 4.16 and
by a maximum of 5.43, while the corresponding numbers
for significant JS-patterns are 1.71 and 3.03. Compared to
the modulation of the rate response for the same period,
which amounts to 0.18, the average modulation of 1.73 of
the frequency of significant JS-patterns indicates that joint-
spike activity has higher discriminative power than rate.
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To validate the results given by the number of JS-
patterns that exhibited a significant increase of JSEs, we
also applied NeuroXidence to a dataset derived by jittering
the original dataset. Thus, we destroyed any coordinated-
firing by jittering spikes with ±10 ms (Fig. 11(a, 4 and b,
4)). This jittering of the data is the same as that used by
NeuroXidence to derive the difference between the real data
and H0 ( j=±10 ms, η=4). Hence, the application of
NeuroXidence on the jittered dataset allows the derivation
of the chance frequency of significant JS-patterns (H0
against H0). The number of significant JS-patterns that
occurred in the jittered dataset amounted to 0.2% of the
number observed in the original dataset. Thus, the error rate
was much smaller than the nominal alpha value of 0.01,
indicating that the test is conservative. The positive side is
that 99.8% of the significant JS-patterns could not be
explained by chance (Fig. 11(a, 3 and b, 3)).

4 Discussion

The distinction between rate codes and temporal codes in
the cerebral cortex has been the origin of heated discussions
over recent years (von der Malsburg 1981; Aertsen et al.
1989; Gerstein et al. 1989; Shadlen and Newsome 1994;

Riehle et al. 1997; Fetz 1997; Brody 1999; Baker and
Lemon 2000; Aertsen et al. 2001; Grün et al. 2003; Ikegaya
et al. 2004). The rate hypothesis assumes that information
is encoded in the discharge frequency of individual cells,
while the temporal code assumes that information is encoded
in the precise timing relations between individual discharges
of distributed neurons. The latter can be tested by a statistical
hypothesis test that checks whether fine temporal cross-
structure represented by joint-spike events (JSE) exists and is
beyond chance level. Therefore, the statistical hypothesis test
is crucially dependent on the statistical formulation of the
chance level of JSEs under the null hypothesis (H0: rate-
hypothesis). To distinguish the temporal from the rate code
hypothesis, H0 has to consider all features of the data that
might be causally related to the rate hypothesis. Only then is
a rejection of H0 interpretable in favor of the temporal
coding hypothesis and provides evidence for cooperative
coding based on joint-spike activity.

We next outline the properties of the NeuroXidence
method in detail, starting with statistical testing and the
basic idea of timescale separation for NeuroXidence. Then
we describe the distinction between rare, spurious, and
reliably reoccurring events, the choice of appropriate
window lengths, the impact of oscillatory and coherent rate
modulations, and the differences between NeuroXidence

Fig. 11 Analysis of simultaneously recorded single-unit activity from
42 neurons from an anesthetized cat. The recordings were made in area
17 during visual stimulation with moving gratings, which were
presented for 3.5 seconds. Stimulus onset occurs at 0 s. Data comprise
20 trials. In (a) the stimulus direction was 30° while it was 120° in (b).
(a 1, b 1) Average PSTHs across all 42 neurons for both stimulus
directions. NeuroXidence was applied on sliding windows (0.2 s) that
were shifted by 0.1 s (τc=5 ms, τr=20 ms, S=20). (a 2, b 2) The
numbers of unique JS-patterns detected per sliding window are color

coded and sorted according to their complexities (y-axis) (no
significance criteria applied, color code is logarithmic). (a (3, 4)),
(b (3, 4)) The frequencies of significant JS-patterns (test-level 1%,
tested on significant excess) for each sliding window (x-axis) are color
coded and sorted according to their complexities ( y-axis). Frequencies
shown in (a (3)), (b (3)) are based on the original dataset, while in
(a (4)), (b (4)) the spikes in the original data were jittered by ±10 ms to
destroy fine temporal cross-structure
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and other methods that are used for detecting coordinated
firing. Last, we discuss results obtained form real data
recorded from area 17 in an anesthetized cat.

4.1 Statistical testing and timescale separation
of NeuroXidence

NeuroXidence implements a statistical hypothesis test for
the analysis of spiking activity utilizing a large number of
neurons, which allows for a dissociation of the temporal-
code and the rate-code hypotheses. In contrast to earlier
methods (Abeles and Gerstein 1988; Grün et al. 1999,
2002a), NeuroXidence is a non-parametric statistical
hypothesis test and does not assume any model about the
spike-train generating process. The estimation of the statis-
tical significance of JS-patterns is based on a comparison
of the frequency of JSEs between the recorded dataset
and one or more surrogate datasets, which are derived
from the recorded dataset but lack any coordinated-firing.
Random shifting of spike trains was utilized to destroy fine
temporal cross-structure while keeping the complete auto-
structure in the surrogate dataset intact. Therefore, Neuro-
Xidence estimates the chance frequency of JSEs under H0
by allowing for the consideration of rate modulations or for
history dependencies, which might exist in each individual
spike train.

To this end, NeuroXidence defines two timescales, τr
and τc. The fast timescale, τc, corresponds to fine temporal
joint-activity across neurons and is believed to be in the
millisecond range. The second timescale, τr, is a lower
bound of rate modulations that are coherent across neurons
and that should be considered as rate, not as fine temporal
joint-activity. The scale between τr and τc is given by η. As
we have shown, small amounts of shifting with η=3 lead to
the considerable test-power of the NeuroXidence method.
Thus, even in cases of very small differences between the
timescales τr and τc (e.g. τc=15 ms for τr=5 ms and η=3),
NeuroXidence can detect a significant excess or deficiency
of JSEs and, therefore, allows for a clear distinction
between the rate- and the temporal-code hypotheses.

In conclusion, the concept of timescale separation, the
reliability and sensitivity of NeuroXidence, and the high
temporal precision for detecting periods of coordinated
firing in short sliding windows all make NeuroXidence
ideally suited for the analysis of neuronal activity that
might exhibit both rate changes and coordinated firing.

4.2 Synchronous events versus spatiotemporal patterns

NeuroXidence is optimized to detect synchronous firings.
However, it can also be applied to the analysis of
spatiotemporal patterns (Abeles and Gerstein 1988), each
consisting of one spike per individual neuron. This requires

mapping each spatiotemporal pattern onto a corresponding
synchronous event by shifting each spike train by its
corresponding temporal delay. Since this mapping is
required for each individual spatiotemporal pattern, the
computational complexity increases linearly with the
number of spatiotemporal patterns of interest.

4.3 Complexity of pattern versus order of coupling

NeuroXidence cannot investigate the nature or the cause of
observed JS-patterns. Hence, higher-complexity JS-patterns
detected by NeuroXidence can be either due to pairwise
coupling or to higher-order interactions of more than pairs.
To infer to what degree pairwise interactions are sufficient,
Schneidman et al. (2006) introduced an analysis based on
the maximum entropy concept and applied it to data recorded
from the retina. They concluded that most of the observed
patterns are explained by pairwise couplings between the
neurons (Schneidman et al. 2006). However, this method
assumes for the independence assumption that the recorded
spike trains can be described by stationary Bernoulli
processes. Both this assumption and the assumption of the
independence of firing of a given neuron over time, are
likely to be false (Brody 1998; Baker and Gerstein 2001).

The importance of the auto-structure on the joint proba-
bility of sets of neurons firing coincidently is highlighted by
data presented in this paper. We have shown that the number
of individual patterns existing in sets of spike trains can be
different by a factor of 10, given the same rate but different
regularities of the spiking process (Fig. 6, periods 4 and 5).
Therefore, any method based on the assumption of indepen-
dent Bernoulli processes, such as the maximum entropy
method used in Schneidan et al. (2006), is likely to fail
since the estimated probability of a JS-pattern does not
account for auto-structure such as oscillations, regularity, or
burstiness of the individual spiking activity. In addition, the
maximum entropy approach requires much more data than
NeuroXidence. The study reported in (Schneidman et al.
2006) was based ∼1 h of recording to estimate interactions
among a set of ten neurons. Given the amount of data that
can be recorded for behavioral experiments as well as
stability and stationarity issues, it appears to be difficult to
obtain sufficient amount of data to allow reliable applica-
tion of these methods in behavioral paradigms. In contrast,
as demonstrated by the analysis of real data in this paper, 20
trials, each with 500 ms sliding windows (in total 10 s), are
sufficient to estimate the statistical significance of JS-
patterns involving 9 of the 42 recorded cells.

4.4 Induced versus evoked JS-patterns

One might want to distinguish two kinds of JS-patterns:
evoked and induced. The first kind consists of JS-patterns
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that are evoked by a stimulus and, therefore, are tightly
time-locked to it with a certain delay. JS-patterns of the
second kind, reflect the internal dynamics of the system
and thus, are not time-locked to the stimulus. Neuro-
Xidence cannot distinguish between evoked and induced
JS-patterns as long as their temporal precision is of the
same order. However, since the required precision of JS-
patterns, τc, is usually on the order of a few milliseconds,
this distinction is of a rather theoretical nature. Evoked JS-
patterns would require, first, that changes of the stimulus
are on the same order as or faster than τc, and, second, that
the temporal precision is maintained over the whole period
from stimulus onset until the occurrence of JS-patterns.
Hence, the distinction is of practical use only for a very few
stimuli such as flickered or flashed visual stimuli and then
only shortly after stimulus onset. In those few cases, trial
shuffling, rather than the timescale separation, can be used
as an alternative for generating surrogate data to distinguish
between induced and evoked JS-patterns. However, since
trial shuffling destroys the correspondence of simultaneous-
ly recorded trials, it also destroys rate co-variations in the
range of the temporal precision of stimulus locking. As
discussed by Brody and others (Brody 1999; Grün et al.
2003; Pipa and Grün 2003), this might lead to false
positives. Therefore, trial shuffling should be used as an
alternative for the concept of timescale separation only
if the changes of the stimulus are of the same order as
τc. If this is not the case, it can be inferred that JS-patterns
detected by NeuroXidence are induced rather than
evoked.

4.5 Rare and spurious events versus reliably
reoccurring events

NeuroXidence differentiates between rare and spurious
events and reoccuring events. Only if events are reliably
reoccurring across trials might they be classified as JS-
patterns with a significant excess or diminution of JSEs. This
allows NeuroXidence to estimate the statistical significance
reliably even for JS-patterns of complexities higher than 2,
which are expected to be rare. In contrast, other methods,
which are based only on the total frequency across trials or
the frequency in a single trial, might reject H0 if the expected
frequency is so low that a few occurrences or even a single
JSE is sufficient to be rated as a significant event. This is
only likely to be the case for higher complexity JSEs, for
which the expectancy is exponentially decreasing. There-
fore, methods based on single trials or on pooled data from
all trials are likely to fail to differentiate between rare and
spurious events, on one side, and events that are reliable and
consistent, on the other side.

4.6 Analysis window length

NeuroXidence can be applied to short time windows to
track transient neuronal states. In contrast to other methods,
the NeuroXidence window length is not restricted by any
assumption on the stationarity of data, since the full auto-
structure including any rate modulation is considered by the
statistical hypothesis test. Thus, the length of the Neuro-
Xidence analysis window can be freely chosen by the
operator to match the assumed duration of neuronal states
of interest.

4.7 Oscillatory processes

Since oscillatory processes are frequently observed in
neuronal data, we studied the impact of oscillatory and,
across neurons, coherent rate modulation by using simulat-
ed data based on inhomogeneous Poisson processes, whose
rates were modulated sinusoidally. Based on this simulated
data, we estimated test-power numerically and also derived
an approximate analytical solution of the test-power (see
Appendix 4). Both the analytical approximation and the
numerical estimation were in agreement and demonstrate
that the test-power increases with increasing frequency of
the coherent rate modulations. This behavior is expected
since NeuroXidence discriminates between fast processes
that are defined on a timescale τc, corresponding to the
precision of JSEs, and processes that are slower than a
timescale τr. Hence, if coherent rate modulations occur on a
timescale that is comparable with τc, NeuroXidence is
expected to reject H0 and to support H1. This illustrates
that the definition of coordinated firing and fine temporal
cross-structure includes explicitly fast and, across neurons,
coherent changes of the instantaneous spike rate, which
occur on a timescale comparable to τc.

4.8 NeuroXidence compared to other methods

In contrast to other methods like the cross-correlation
analysis (Gerstein and Perkel 1969; König 1994) and the
joint peri-stimulus time histogram (JPSTH; Aertsen et al.
1989), NeuroXidence allows for the analysis of interactions
between larger sets of neurons than just pairs. To compare
the statistical properties of NeuroXidence with the UE-
method and the shuffle-corrected cross-correlogram, we
applied all three methods to the same simulated dataset
based on 18 simultaneous Poisson or Gamma processes.
The simulated data contained epochs with constant rates
between 5 and 40 ap/s, rate modulations between 5 and
45 ap/s, latency variability, and trial-by-trial variability of
rate-levels. Only NeuroXidence did not exhibit an increased
false-positives rate for any of the epochs of the simulated
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data, indicating that a consideration of the auto-structure, as
well as a trial-based evaluation, is crucial for dissociating
the rate and the temporal code hypothesis.

However, if NeuroXidence and the UE-method use
analysis windows of equal length, the test-power of the
UE-method is higher. This has two reasons. First, the UE-
method is a parametric approach and assumes a model,
which improves the test-power if the model is correct. The
disadvantage is that a model-based approach is only valid
as long as the model is describing approximately well the
real observed data. Second, NeuroXidence incorporates the
trial-by-trial variability of the frequency of occurrence of
JSEs. Therefore, it requires that the frequency of JSEs
across all trials is reliable and, for most of the trials, is
higher in the real than in the surrogate dataset. In contrast,
the UE-method considers only the total frequency of JSEs
across trials. If the expected frequency is very low, a few
occurrences or even one single JSE across all trials might
lead to a rejection of H0. This increases the sensitivity, as
reflected by the higher test-power, but on the other hand,
this also increases the probability of false rejections in the
case of rare events.

4.9 Significant joint-spike activity in real data

We applied NeuroXidence to real data recorded in visual
area 17 in an anesthetized cat. Our results demonstrate that
JSEs, with a precision of 5 ms, occurred significantly more
often than expected by chance for complexity 2–8 JS-
patterns. We investigated the strength of neuronal synchro-
ny across two stimulation conditions and compared the
measures obtained by NeuroXidence (Fig. 11) to the
measures obtained by a classical pairwise method, which
employs the computation of cross-correlation histograms
(Fig. 10; König 1994; Samonds et al. 2003). For pairwise
interactions (complexity 2), both measures produce similar
results. Neuronal synchrony is strongest in stimulation
conditions in which the orientation of the sinusoidal grating
matches the preferred orientation of most of the multi-units
included in the analysis (condition 30°; orientation prefer-
ences are shown in Electronic Supplemental Fig. 6), while
synchrony is weakest under the condition of 120° when the
neurons are stimulated least optimally. Results obtained
with NeuroXidence indicate that interactions of higher
complexities show even stronger task- and stimulus-
specific changes in the strength of neuronal synchrony than
pairwise interactions (Fig. 11). Thus, the comparison of the
relative modulation of rate responses between conditions
30° and 120°, reveals that the JS-activity has the higher
discriminative power.

We validated our result by analyzing a jittered version of
the original data. This validation was equivalent to a

comparison of H0 against H0 and served as the estimation
of the chance frequency of JS-patterns with excess JSEs.
Since only 0.2% of JS-patterns with excess JSEs remained
significant after jittering, we conclude that the increase of
the frequency of JS-patterns with an excess of JSEs is
highly significant for complexities ranging between 2–8.
This is, to our knowledge, the first demonstration of JS-
activity and its stimulus specificity that considers the
complete auto-structure and trial-by-trial variability of spike
trains when calculating JSE frequencies in real data.

These results illustrate that NeuroXidence allows for an
evaluation of JS-patterns independent of rate modulations,
auto-structure, and trial-by-trial variability. This highlights
the strength of NeuroXidence for investigating the complex
interactions amoung neurons in terms of fine temporal
structure that might coexist with rate modulations of
individual neurons.

5 Conclusion

In conclusion, we have presented the new analysis tool
NeuroXidence (www.NeuroXidence.com) for detecting
temporally coordinated firing events in spike trains. We
have demonstrated its performance, reliability, and applica-
bility, and compared it to currently used methods. The
results obtained in the analysis of real data provide strong
evidence that precise temporal relations between the
discharges of distributed neurons contain information about
the stimulus configurations and, therefore, support the
temporal coding hypothesis.
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Appendix 1: Pre-processing

The pre-processing prevents temporally overlapping JSEs,
while preserving each individual JSE and its exact frequency
of occurrence. Afterwards, the minimal interval between
JSEs occurring within any single spike train is larger than the
amount of allowed jitter. Pre-processing a dataset requires
two steps. First, an array of bins that contain zeros is padded
to both ends of the spike trains to prevent border problems at
later processing steps (see Fig. 12(a), Appendix 1). Second,
NeuroXidence applies a recursive algorithm sequentially to
each individual spike train to isolate all JSEs that are
included in overlapping JSEs and to represent them as
individual and isolated JSEs in the dataset for later
processing (see Fig. 12(b), Appendix 1).
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The resolution of overlapping JSEs might multiply sub-
patterns that are included in the resulting isolated JSEs. The
recursive algorithm has to correct this multiplication to
allow for an exact derivation of the frequency of occurrence
of each JSE. The algorithm first identifies, one spike train at
a time, all sets of spikes that have an inter-spike interval
smaller than G+/−, a kernel defining the amount of allowed
jitter. Operational fields (see Fig. 12(b), Appendix 1)
describe the temporal windows spanning such sets. A field
includes the G − bins preceding the first and the G+ bins
following the last spikes of a set. To separate the JSEs
localized by the overlapping operational fields (see
Fig. 12(b), Appendix 1, dark green), a modified copy of
the overlapping JSEs is appended to the end of the dataset.
Note, that only the data covered by operational fields is
replicated and not the entire dataset. The copy is missing
the second spike in the overlapping field, leaving an intact
and isolated JSE. Likewise, in the original of the over-
lapping JSEs, the first spike is deleted, producing the
second isolated JSE. Next, the sub-patterns that were
doubled by the copying process, i.e. those spikes that did
not have overlapping operational fields, are copied into a
d-dataset. Since the algorithm is applied sequentially in
time, there is no difficulty in separating three or more

spikes that occur in an interval smaller than G+/−. For
uncovering all overlapping JSEs in the original dataset, as
well as in the d-dataset, the recursive algorithm is applied
sequentially to all units in the dataset and in the d-dataset.
The algorithm first processes unit n in the original dataset
and then it processes unit n+1 in the d-dataset. This ensures
that JSEs that are copied from the original dataset into the
d-dataset no longer contain any overlapping operational
fields for units 1 to n. To accurately count the total number
of isolated JSEs, one has to consider that JSEs contained in
the d-dataset have been doubled. Hence, the number of
individual JSEs in the d-dataset has to be subtracted from
the number of matching JS-patterns in the original data. In
contrast, JS-patterns that contain overlapping operational
fields in the d-dataset lead to an overcorrection of the
actual frequency in the original dataset. Therefore, the
number JSEs that were doubled in the d-dataset should be
tracked in the original dataset and added to the total. The
computational complexity of resolving overlapping JSEs
increases approximately exponentially with the number
of spikes that are less than G+/− apart. Thus, a higher
computational effort is required if spike trains contain a lot
of short intervals, as in the case of bursting cells or
Poissonian firing.
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Fig. 12 (a, b) Preprocessing of spike trains in advance of the
detection of joint-spike events (JSEs). A spike train is defined as a
binary process (1=spike, 0=no spike) with a bin width small enough
to resolve an individual spike. (a) Padding zeros to the beginning and
the end of the spike trains ensures that the replacement of spikes
by the kernel G+/− is possible. (b) Overlapping JSEs are isolated.
Overlapping regions of allowed jitter are identified, which correspond
to overlapping operational fields (dark green). The algorithm uncovers

overlapping patterns in two steps: first, the copying of patterns, and
second, the deletion of single spikes. After revealing the overlapping
patterns, the ‘modified’ dataset contains all isolated patterns, while the
‘d-data’ dataset contains all patterns that had been multiplied. The
total frequency of occurrence of a test-pattern in the original data is
given by the frequency in the ‘modified’ dataset, minus the frequency
in the ‘d-data’ set
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Appendix 2: Parametric t test versus non-parametric
Wilcoxon rank test

In practical applications, the Wilcoxon rank test (Wilcoxon
test) is more likely to be appropriate for hypothesis testing
than Student’s t test. The t test assumes that the mean value
of ΔFk is normally distributed, while the Wilcoxon test
does not make any assumptions about the distribution of the
mean. This difference between the two tests is important
since JSEs are expected to be rare when spike rates are low
and JSE complexities are high (i.e., large numbers of
neurons are recorded in parallel). With such rare events, the
probability distribution of the total number of JSEs is
expected to be better approximated by a Poisson than by a
normal distribution. Thus, the distribution of JSEs is likely

to violate the assumptions of the t test. Although the t test is
to some degree robust against skewed distributions (Boneau
1960), the Wilcoxon test may, in many cases, be a much
better choice, especially when spike rates are low and
complexities of JSEs are greater than two.

Appendix 3: Comparison of the test-power
of NeuroXidence and of the UE-method

To compare the test-power of NeuroXidence with that of
the UE-method, we applied both methods to two simulated
datasets, which were characterized by the same set of
parameters. Simulated dataset one contained JSEs that were
absolutely synchronous, while simulated dataset two
contained JSEs that were deduced from simulated dataset
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Fig. 13 Difference in the test-power between NeuroXidence and the
unitary event method (UE-method). (a–c) Variation of length l of the
analysis window (a), the number of trials T (b), and the spike rate r
(c) from the stand parameter set (T=50, r=15 ap/s, S=20, η=3) are
presented. Spike trains were modeled as a single-interaction process
(SIP) based on homogenous Poisson processes. The frequency of

excess joint-spike events (JSEs) beyond the chance level is given by
the x-axis. (a) The length of the analysis window used for both
NeuroXidence and the UE-method varied between 0.2 s, 0.4 s, and
0.8 s. (b, c) The NeuroXidence analysis window was 0.8 s while and
the UE window was 0.2 s long. Rows (1–4) show the difference in
test-power for test-patterns of complexity 2–5
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one by jittering each individual spike by an amount smaller
than the allowed jitter τc (Fig. 13, Appendix 3). Positive
values indicate a higher test-power for the UE-method. We
used absolutely precise JS-patterns to derive the test-power
of the UE-method, since it is based on exclusive binning,
which limits its capability to detect jittered JS-patterns of
complexities higher than 2 (Grün et al. 1999). The
combination of parameters, given by 50 trials, a spike rate
of the background process of 15 ap/s, 20 surrogates, and
η=3, served as a standard parameter set, from which 11
different simulated datasets were derived by changing
either the window length (l=200, 400, 800 ms), the number
of trials (T=20, 50, 100, 200), or the spike rate (r=10, 15,
30, 60, 90 ap/s).

First, we studied the difference in the test-power as a
function of analysis window length. Initially, we generated
simulated datasets where the NeuroXidence analysis win-
dow had the same length as that of the UE-method (Fig. 13,
Appendix 3 (a, 1–4)). In that case, the test-power of the
UE-method was, for all tested parameters, higher than for
the NeuroXidence method and the difference increased with
increasing JS-pattern complexity. However, since the length
of the NeuroXidence analysis window is not constrained by
the dynamics in the auto-structure, we increased the
window length of the NeuroXidence window up to 0.8 s,
while we kept the length of the UE-method analysis
window at 0.2 s (Fig. 13(b and c), Appendix 3). The latter
was selected to be compatible with the window length used
to analyze real data and reflects the constraint that data
inside a window have to be approximately described by a
stationary Bernoulli process. The longer NeuroXidence
window reduced the test-power advantage of the UE-
method. For JS-patterns of complexities higher than 2, the
difference between the test-power of both methods was
substantially reduced and dropped for complexity 2 JS-
patterns below 15% (Fig. 13(b, 1), Appendix 3).

Only in the case of high rates was the NeuroXidence
test-power higher than the test-power of the UE-method.
The reason is that the UE-method assumes that data can be
approximately described by a binary Bernoulli process.
Using this assumption, the method detects JSEs based on
exclusive and binary binning. To ensure a binary process,
the UE-method has to utilize clipping, which only counts
one spike, no matter how many spikes actually fell in the
bin. Thus, the detection scheme of the UE-method changes
the data structure and does not detect all existing JS-
patterns. Since the simulated data were based on Poisson
spike trains, increasing the spike rates led to an increased
probability of more than one spike per bin. This led to an
increasing number of JS-patterns that went undetected by

the UE-method. It also explains the relative drop in the test-
power compared to NeuroXidence, which, in contrast,
detects all existing JS-patterns due to the pre-processing
(Appendix 1) that uncovers overlapping JSEs.

Appendix 4: Analytical description of the test-power
for coherent oscillatory rate changes

We derived an analytical description that allows for the
approximation of the theoretically predicted test-power
A′(v)c. To this end, we first derived an analytical description
of the expected difference, Δf, between the frequency of
JSEs in the original, f (org), and the jittered, f (sur), datasets.
As a model we assumed an inhomogeneous Poisson
process with a rate function, ri (t), that is coherently mod-
ulated across neurons by a sinusoidal oscillation with
frequency v :

ri tð Þ ¼ 1

2
A 1þ sin n � tð Þ½ � with i ¼ 1 . . . N: ð7Þ

The analytical description of Δf is based on the
description of the impact of jittering. Jittering of spikes is
equivalent to a convolution of the instantaneous rate, ri (t),
with a jitter-kernel that is defined by the corresponding
probability distribution of the jitter values. We assumed a
rectangular jitter-kernel prect ( j ), corresponding to a uni-
form distribution of random jitter values bounded between
0 and τc. The Fourier transformation of prect( j ) is Prect(v′),

prect jð Þ ¼
(
1 for 0 e j e τc
0 else

, Prect v
0ð Þ ¼ sin π τcv0ð Þ

π τ cv0
:

ð8Þ
Therefore, the convolution of ri (t) with prect ( j) in the time
domain is equivalent to a modulation of the Fourier spectrum
of the instantaneous rate function Ri (v) by Prect (v′) in the
frequency domain. In the case that the rate function is
continuous, has infinite length, and is a sinusoid with
frequency v, the Fourier spectrum of ri (t) (see Eq. (6) in
main text) is a delta-peak at v. Thus, the jittering of spikes
maps the instantaneous rate ri (t) onto ri

jit(t):

r jit
i tð Þ ¼ 1

2
A0 vð Þ 1þ sin vtð Þ½ � with A0 vð Þ

¼ A
sin π τcvð Þ

π τ cv
: ð9Þ

Based on the instantaneous rates ri (t) and ri
jit(t), the

instantaneous joint probabilities of a certain kind of JS-

J Comput Neurosci



pattern of complexity c is defined by jpc(t) for the original
and jpc

jit(t) for the jittered datasets:

jpc tð Þ ¼
Yi¼c

i¼1
ri tð Þ and jp jit

c tð Þ ¼
Yi¼c

i¼1
r jit
i tð Þ ¼ A0 νð Þc

Yi¼c

i¼1
ri tð Þ tð Þ:
ð10Þ

Thus, the expected frequency 〈 f 〉c of a JSE of complexity c
in the time-interval between 0 and l is given by

f orgð Þh ic ¼
Z l

0
jpc tð Þ dt and f surð Þh ic ¼ A0 vð Þc f orgð Þh i:

ð11Þ
Accordingly, the expected difference between the expected
frequency of JSEs in the original and the jittered datasets is
given by:

Δfh ic ¼ f orgð Þh ic � f surð Þh ic ¼ 1� A0 nð Þcð Þ f orgð Þh ic:
ð12Þ

Note that the modulation is independent of the duration of the
interval (l ) used to derive the expected frequency of JSEs.

Appendix 5: Experimental methods

Preparation

Anesthesia was induced with ketamine and maintained
with a mixture of 70% N2O and 30% O2, supplemented with
halothane (0.4–0.6%). The animal was paralyzed with pan-
curonium bromide (Pancuronium, Organon, 0.15 mg kg−1 h−1).
All the experiments were conducted according to the guide-
lines of the American Physiological Society and German law
for the protection of animals, approved by the local govern-
ment’s ethical committee and overseen by a veterinarian.

Recordings and visual stimulation

Multi-unit activity was recorded from a region of area 17
corresponding to the central part of the visual field. Single-
unit activity was extracted by offline sorting. For recording
we used two SI-based multi-electrode probes (16-channels
per electrode) supplied by the Centre for Neural Commu-
nication Technology at the University of Michigan
(Michigan probes) with an inter-contact distance of
200 μm (0.3–0.5 MΩ impedance at 1,000 Hz). The probes
were inserted in the cortex approximately perpendicular to
the surface to record from neurons at different cortical
depths and along an axis tangential to the cortical surface.

The software used for visual stimulation was Active-
STIM (www.ActiveSTIM.com). The stimulus consisted of

a drifting sinusoidal grating, spanning 15° of visual angle
(spatial frequency, 3°/cycle; temporal frequency of the drift,
3.6°/s), which was sufficient to cover the receptive fields of
all the recorded cells simultaneously and to stimulate also
the regions surrounding the receptive fields.

Appendix 6: Standard parameter set for NeuroXidence

The standard choice for analysis parameters is τc=5 ms and
τr=20 ms, equivalent to η=4. The duration of the analysis
window should be around 100 ms or longer. The number of
surrogates should be S=20. Only if NeuroXidence is used
to identify a deficiency of JSEs S should be 1. To allow for
a reasonable test-power, not less than 20 trials should be
used. The bin length corresponding to the timing resolution
in the spike train should be 1 ms. The statistical evaluation
should be based on the Wilcoxon test. See also (www.
NeuroXidence.com)
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